Skip to main content
Log in

Topological crystalline insulator nanomembrane with strain-tunable band gap

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The ability to fine-tune band gap and band inversion in topological materials is highly desirable for the development of novel functional devices. Here we propose that the electronic properties of free-standing nanomembranes of the topological crystalline insulators (TCI) SnTe and Pb1−x Sn x (Se,Te) are highly tunable by engineering elastic strain and membrane thickness, resulting in tunable band gap and giant piezoconductivity. Membrane thickness governs the hybridization of topological electronic states on opposite surfaces, while elastic strain can further modulate the hybridization strength by controlling the penetration length of surface states. We propose a frequency-resolved infrared photodetector using force-concentration induced inhomogeneous elastic strain in TCI nanomembranes with spatially varying width. The predicted tunable band gap accompanied by strong spin-textured electronic states will open new avenues for fabricating piezoresistive devices, infrared detectors and energy-efficient electronic and spintronic devices based on TCI nanomembrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hasan, M. Z.; Kane, C. L. Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

    Article  Google Scholar 

  2. Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.

    Article  Google Scholar 

  3. Xu, S.-Y.; Xia, Y.; Wray, L. A.; Jia, S.; Meier, F.; Dil, J. H.; Osterwalder, J.; Slomski, B.; Bansil, A.; Lin, H.; et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 2011, 332, 560–564.

    Article  Google Scholar 

  4. Wu, L.; Brahlek, M.; Valdés Aguilar, R.; Stier, A. V.; Morris, C. M.; Lubashevsky, Y.; Bilbro, L. S.; Bansal, N.; Oh, S.; Armitage, N. P. A sudden collapse in the transport lifetime across the topological phase transition in (Bi1−x Inx)2Se3. Nat. Phys. 2013, 9, 410–414.

    Article  Google Scholar 

  5. Zhang, Y.; He, K.; Chang, C.-Z.; Song, C.-L.; Wang, L.-L.; Chen, X.; Jia, J.-F.; Fang, Z.; Dai, X.; Shan, W.-Y.; et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

    Article  Google Scholar 

  6. Kim, D.; Cho, S.; Butch, N. P.; Syers, P.; Kirshenbaum, K.; Adam, S.; Paglione, J.; Fuhrer, M. S. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3. Nat. Phys. 2012, 8, 459–463.

    Google Scholar 

  7. Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films. Phys. Rev. Lett. 2012, 109, 066803.

    Article  Google Scholar 

  8. Xu, S.-Y.; Neupane, M.; Liu, C.; Zhang, D.; Richardella, A.; Andrew Wray, L.; Alidoust, N.; Leandersson, M.; Balasubramanian, T.; Sánchez-Barriga, J.; et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat. Phys. 2012, 8, 616–622.

    Article  Google Scholar 

  9. Checkelsky, J. G.; Ye, J.; Onose, Y.; Iwasa, Y.; Tokura, Y. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat. Phys. 2012, 8, 729–733.

    Article  Google Scholar 

  10. Chang, C.-Z.; Zhang, J.; Feng, X.; Shen, J.; Zhang, Z.; Guo, M.; Li, K.; Ou, Y.; Wei, P.; Wang, L.-L.; et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 2013, 340, 167–170.

    Article  Google Scholar 

  11. Wei, P.; Katmis, F.; Assaf, B. A.; Steinberg, H.; Jarillo-Herrero, P.; Heiman, D.; Moodera, J. S. Exchange-coupling-induced symmetry breaking in topological insulators. Phys. Rev. Lett. 2013, 110, 186807.

    Article  Google Scholar 

  12. Li, J.; Shan, Z.; Ma, E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 2014, 39, 108–114.

    Article  Google Scholar 

  13. Liu, J.; Xu, Y.; Wu, J.; Gu, B.-L.; Zhang, S. B.; Duan, W. Manipulating topological phase transition by strain. Acta Cryst. 2014, C70, 118–122.

    Google Scholar 

  14. Young, S. M.; Chowdhury, S.; Walter, E. J.; Mele, E. J.; Kane, C. L.; Rappe, A. M. Theoretical investigation of the evolution of the topological phase of Bi2Se3 under mechanical strain. Phys. Rev. B 2011, 84, 085106.

    Article  Google Scholar 

  15. Bahramy, M. S.; Yang, B. J.; Arita, R.; Nagaosa, N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat. Commun. 2012, 3, 679.

    Article  Google Scholar 

  16. Yang, K.; Setyawan, W.; Wang, S.; Buongiorno Nardelli, M.; Curtarolo, S. A search model for topological insulators with high-throughput robustness descriptors. Nat. Mater. 2012, 11, 614–619.

    Article  Google Scholar 

  17. Kim, H.-S.; Kim, C. H.; Jeong, H.; Jin, H.; Yu, J. Strain-induced topological insulator phase and effective magnetic interactions in Li2IrO3. Phys. Rev. B 2013, 87, 165117.

    Article  Google Scholar 

  18. Agapito, L. A.; Kioussis, N.; Goddard, W. A., III; Ong, N. P. Novel family of chiral-based topological insulators: Elemental tellurium under strain. Phys. Rev. Lett. 2013, 110, 176401.

    Article  Google Scholar 

  19. Winterfeld, L.; Agapito, L. A.; Li, J.; Kioussis, N.; Blaha, P.; Chen, Y. P. Strain-induced topological insulator phase transition in HgSe. Phys. Rev. B 2013, 87, 075143.

    Article  Google Scholar 

  20. Zaheer, S.; Young, S. M.; Cellucci, D.; Teo, J. C. Y.; Kane, C. L.; Mele, E. J.; Rappe, A. M. Spin texture on the Fermi surface of tensile-strained HgTe. Phys. Rev. B 2013, 87, 045202.

    Article  Google Scholar 

  21. Zhang, Q.; Cheng, Y.; Schwingenschlögl, U. Series of topological phase transitions in TiTe2 under strain. Phys. Rev. B 2013, 88, 155317.

    Article  Google Scholar 

  22. Qian, X.; Liu, J.; Fu, L.; Li, J. Quantum spin Hall effect and topological field effect transistor in two-dimensional transition metal dichalcogenides. arXiv:1406.2749, 2014.

    Google Scholar 

  23. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 2011, 106, 106802.

    Article  Google Scholar 

  24. Hsieh, T. H.; Lin, H.; Liu, J. W.; Duan, W. H.; Bansil, A.; Fu, L. Topological crystalline insulators in the SnTe material class. Nat. Commun. 2012, 3, 982.

    Article  Google Scholar 

  25. Tanaka, Y.; Ren, Z.; Sato, T.; Nakayama, K.; Souma, S.; Takahashi, T.; Segawa, K.; Ando, Y. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 2012, 8, 800–803.

    Article  Google Scholar 

  26. Dziawa, P.; Kowalski, B. J.; Dybko, K.; Buczko, R.; Szczerbakow, A.; Szot, M.; Łusakowska, E.; Balasubramanian, T.; Wojek, B. M.; Berntsen, M. H.; et al. Topological crystalline insulator states in Pb1−x SnxSe. Nat. Mater. 2012, 11, 1023–1027.

    Google Scholar 

  27. Xu, S.-Y.; Liu, C.; Alidoust, N.; Neupane, M.; Qian, D.; Belopolski, I.; Denlinger, J. D.; Wang, Y. J.; Lin, H.; Wray, L. A.; et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−x SnxTe. Nat. Commun. 2012, 3, 1192.

    Article  Google Scholar 

  28. Tanaka, Y.; Sato, T.; Nakayama, K.; Souma, S.; Takahashi, T.; Ren, Z.; Novak, M.; Segawa, K.; Ando, Y. Tunability of the k-space location of the Dirac cones in the topological crystalline insulator Pb1−x SnxTe. Phys. Rev. B 2013, 87, 155105.

    Article  Google Scholar 

  29. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

    Article  Google Scholar 

  30. Kohn, W.; Sham, L. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

    Article  Google Scholar 

  31. Qian, X.; Li, J.; Qi, L.; Wang, C.-Z.; Chan, T.-L.; Yao, Y.-X.; Ho, K.-M.; Yip, S. Quasiatomic orbitals for ab initio tight-binding analysis. Phys. Rev. B 2008, 78, 245112.

    Article  Google Scholar 

  32. Lu, W. C.; Wang, C. Z.; Chan, T. L.; Ruedenberg, K.; Ho, K. M. Representation of electronic structures in crystals in terms of highly localized quasiatomic minimal basis orbitals. Phys. Rev. B 2004, 70, 041101.

    Article  Google Scholar 

  33. Marzari, N.; Mostofi, A. A.; Yates, J. R.; Souza, I.; Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 2012, 84, 1419–1475.

    Article  Google Scholar 

  34. Lopez Sancho, M. P.; Lopez Sancho, J. M.; Rubio, J. Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100). J. Phys. F: Met. Phys. 1984, 14, 1205–1215.

    Article  Google Scholar 

  35. Lopez Sancho, M. P.; Lopez Sancho, J. M.; Rubio, J. Highly convergent schemes for calculation of bulk and surface Green-functions. J. Phys. F: Met. Phys. 1985, 15, 851–858.

    Article  Google Scholar 

  36. Qian, X.; Li, J.; Yip, S. Calculating phase-coherent quantum transport in nanoelectronics with ab initio quasiatomic orbital basis set. Phys. Rev. B 2010, 82, 195442.

    Article  Google Scholar 

  37. Liu, J.; Hsieh, T. H.; Wei, P.; Duan, W.; Moodera, J.; Fu, L. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. Nat. Mater. 2013, 13, 178–183.

    Article  Google Scholar 

  38. Liu, J.; Duan, W.; Fu, L. Two types of surface states in topological crystalline insulators. Phys. Rev. B 2013, 88, 241303(R).

    Article  Google Scholar 

  39. Barone, P.; Di Sante, D.; Picozzi, S. Strain engineering of topological properties in lead-salt semiconductors. Phys. Status Solidi-RRL 2013, 7, 1102–1106.

    Article  Google Scholar 

  40. Feng, J.; Qian, X.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 2012, 6, 866–872.

    Article  Google Scholar 

  41. Pereira, V. M.; Castro Neto, A. H. Strain engineering of graphene’s electronic structure. Phys. Rev. Lett. 2009, 103, 046801.

    Article  Google Scholar 

  42. Pereira, V. M.; Castro Neto, A. H.; Peres, N. M. R. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 2009, 80, 045401.

    Article  Google Scholar 

  43. Guinea, F.; Katsnelson, M. I.; Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 2010, 6, 30–33.

    Article  Google Scholar 

  44. Levy, N.; Burke, S. A.; Meaker, K. L.; Panlasigui, M.; Zettl, A.; Guinea, F.; Castro Neto, A. H.; Crommie, M. F. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 2010, 329, 544–547.

    Article  Google Scholar 

  45. Nam, D.; Sukhdeo, D. S.; Kang, J. H.; Petykiewicz, J.; Lee, J. H.; Jung, W. S.; Vučković, J.; Brongersma, M. L.; Saraswat, K. C. Strain-induced pseudoheterostructure nanowires confining carriers at room temperature with nanoscale-tunable band profiles. Nano Lett. 2013, 13, 3118–3123.

    Article  Google Scholar 

  46. Zhu, T.; Li, J. Ultra-strength materials. Prog. Mater. Sci. 2010, 55, 710–757.

    Article  Google Scholar 

  47. Zhu, T.; Li, J.; Ogata, S.; Yip, S. Mechanics of ultra-strength materials. MRS Bull. 2009, 34, 167–172.

    Article  Google Scholar 

  48. Roberts, M. M.; Klein, L. J.; Savage, D. E.; Slinker, K. A.; Friesen, M.; Celler, G.; Eriksson, M. A.; Lagally, M. G. Elastically relaxed free-standing strained-silicon nanomembranes. Nat. Mater. 2006, 5, 388–393.

    Article  Google Scholar 

  49. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  50. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  51. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  52. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 1988, 38, 3098–3100.

    Article  Google Scholar 

  53. Langreth, D. C.; Mehl, M. J. Beyond the local-density approximation in calculations of ground-state electronic-properties. Phys. Rev. B 1983, 28, 1809–1834.

    Article  Google Scholar 

  54. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  55. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  56. Zhou, D.; Li, Q.; Ma, Y.; Cui, Q.; Chen, C. Pressure-driven enhancement of topological insulating state in tin telluride. J. Phys. Chem. C 2013, 117, 8437–8442.

    Article  Google Scholar 

  57. Qian, X.; Umari, P.; Marzari, N. Photoelectron properties of DNA and RNA bases from many-body perturbation theory. Phys. Rev. B 2011, 84, 075103.

    Article  Google Scholar 

  58. Umari, P.; Qian, X.; Marzari, N.; Stenuit, G.; Giacomazzi, L.; Baroni, S. Accelerating GW calculations with optimal polarizability basis. Phys. Status Solidi B 2011, 248, 527–536.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Fu or Ju Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, X., Fu, L. & Li, J. Topological crystalline insulator nanomembrane with strain-tunable band gap. Nano Res. 8, 967–979 (2015). https://doi.org/10.1007/s12274-014-0578-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0578-9

Keywords

Navigation