Nano Research

, Volume 8, Issue 3, pp 851–859 | Cite as

Laser induced oxidation and optical properties of stoichiometric and non-stoichiometric Bi2Te3 nanoplates

  • Rui He
  • Sukrit Sucharitakul
  • Zhipeng Ye
  • Courtney Keiser
  • Tim E. Kidd
  • Xuan P. A. Gao
Research Article


Bi-Te nanoplates (NPs) grown by a low pressure vapor transport method have been studied by Raman spectroscopy, atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and Auger electron spectroscopy (AES). We find that the surface of relatively thick (more than tens of nanometers) Bi2Te3 NPs is oxidized in the air and forms a bump under heating with moderate laser power, as revealed by the emergence of Raman lines characteristic of Bi2O3 and TeO2 and characterization by AFM and EDS. Further increase of laser power burns holes on the surface of the NPs. Thin (thicknesses less than 20 nm) NPs with stoichiometry different from Bi2Te3 were also studied. Raman lines from non-stoichiometric NPs are different from those of stoichiometric ones and display characteristic changes with the increase of Bi concentration. Thin NPs with the same thickness but different stoichiometries show different color contrast compared to the substrate in the optical image. This indicates that the optical absorption coefficient in thin Bi-Te NPs strongly depends on their stoichiometry.


bismuth telluride nanoplate Raman spectroscopy oxidation stoichiometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_567_MOESM1_ESM.pdf (984 kb)
Supplementary material, approximately 983 KB.


  1. [1]
    Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181.CrossRefGoogle Scholar
  2. [2]
    Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.CrossRefGoogle Scholar
  3. [3]
    Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J. H.; Meier, F.; Osterwalder, J.; Patthey, L.; Checkelsky, J. G.; Ong, N. P. et al. A tunable topological insulator in the spin helical dirac transport regime. Nature 2009, 460, 1101–1105.CrossRefGoogle Scholar
  4. [4]
    Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.CrossRefGoogle Scholar
  5. [5]
    Lee, J.; Kim, J.; Moon, W.; Berger, A.; Lee, J. Enhanced Seebeck coefficients of thermoelectric Bi2Te3 nanowires as a result of an optimized annealing process. J. Phys. Chem. C 2012, 116, 19512–19516.CrossRefGoogle Scholar
  6. [6]
    Yu, F. R.; Zhang, J. J.; Yu, D. L.; He, J. L.; Liu, Z. Y.; Xu, B.; Tian, Y. J. Enhanced thermoelectric figure of merit in nanocrystalline Bi2Te3 bulk. J. Appl. Phys. 2009, 105, 094303.CrossRefGoogle Scholar
  7. [7]
    Wright, D. A. Thermoelectric properties of bismuth telluride and its alloys. Nature 1958, 181, 834.CrossRefGoogle Scholar
  8. [8]
    Yamana, K.; Kihara, K.; Matsumoto, T. Bismuth tellurides: BiTe and Bi4Te3. Acta Cryst. 1979, B35, 147–149.CrossRefGoogle Scholar
  9. [9]
    Kim, Y.; Cho, S.; DiVenere, A.; Wong, G. K. L.; Ketterson, J. B. Composition-dependent layered structure and transport properties in BiTe thin films. Phys. Rev. B 2001, 63, 155306.CrossRefGoogle Scholar
  10. [10]
    Russo, V.; Bailini, A.; Zamboni, M.; Passoni, M.; Conti, C.; Casari, C. S.; Bassi, A. L.; Bottani, C. E. Raman spectroscopy of Bi-Te thin films. J. Raman Spectrosc. 2008, 39, 205–210.CrossRefGoogle Scholar
  11. [11]
    Teweldebrhan, D.; Goyal, V.; Balandin, A. A. Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. Nano Lett. 2010, 10, 1209–1218.CrossRefGoogle Scholar
  12. [12]
    Jones, P.; Huber, T. E.; Melngailis, J.; Barry, J.; Ervin, M. H.; Zheleva, T. S.; Nikolaeva, A.; Konopko, L.; Graf, M. Electrical contact resistance of bismuth telluride nanowires. In Proceedings of the 25th International Conference on Thermolelectrics, Vienna, Austria, 2006, pp 693–696.Google Scholar
  13. [13]
    Qu, D. X.; Hor, Y. S.; Xiong, J.; Cava, R. J.; Ong, N. P. Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3. Science 2010, 329, 821–824.CrossRefGoogle Scholar
  14. [14]
    Ren, Z.; Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Optimizing Bi2−xSbxTe3−ySey solid solutions to approach the intrinsic topological insulator regime. Phys. Rev. B 2011, 84, 165311.CrossRefGoogle Scholar
  15. [15]
    Kong, D. S.; Chen, Y. L.; Cha, J. J.; Zhang, Q. F.; Analytis, J. G.; Lai, K. J.; Liu, Z. K.; Hong, S. S.; Koski, K. J.; Mo, S. K. et al. Ambipolar field effect in the ternary topological insulator (BixSb1−x)2Te3 by composition tuning. Nat. Nanotechnol. 2011, 6, 705–709.CrossRefGoogle Scholar
  16. [16]
    Wang, Z. H.; Qiu, R. L. J.; Lee, C. H.; Zhang, Z. D.; Gao, X. P. A. Ambipolar surface conduction in ternary topological insulator Bi2(Te1−xSex)3 nanoribbons. ACS Nano 2013, 7, 2126–2131.CrossRefGoogle Scholar
  17. [17]
    Tang, H.; Liang, D.; Qiu, R. L. J.; Gao, X. P. A. Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano 2011, 5, 7510–7516.CrossRefGoogle Scholar
  18. [18]
    Kong, D. S.; Dang, W. H.; Cha, J. J.; Li, H.; Meister, S.; Peng, H. L.; Liu, Z. F.; Cui, Y. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 2010, 10, 2245–2250.CrossRefGoogle Scholar
  19. [19]
    Kullmann, W.; Geurts, J.; Richter, W.; Lehner, N.; Rauh, H.; Steigenberger, U.; Eichhorn, G.; Geick, R. Effect of hydrostatic and uniaxial pressure on structural properties and raman active lattice vibrations in Bi2Te3. Phys. Status Solidi B 1984, 125, 131–138.CrossRefGoogle Scholar
  20. [20]
    He, R.; Wang, Z. H.; Qiu, R. L. J.; Delaney, C.; Beck, B.; Kidd, T. E.; Chancey, C. C.; Gao, X. P. A. Observation of infrared-active modes in Raman scattering from topological insulator nanoplates. Nanotechnology 2012, 23, 455703.CrossRefGoogle Scholar
  21. [21]
    Salazar-Pérez, A. J.; Camacho-López, M. A.; Morales-Luckie, R. A.; Sánchez-Mendieta, V.; Ureña-Núñez, F.; Arenas-Alatorre, J. Structural evolution of Bi2O3 prepared by thermal oxidation of bismuth nano-particles. Superficies y Vacío 2005, 18, 4–8.Google Scholar
  22. [22]
    Guo, J. H.; Qiu, F.; Zhang, Y.; Deng, H. Y.; Hu, G. J.; Li, X. N.; Yu, G. L.; Dai, N. Surface oxidation properties in a topological insulator Bi2Te3 film. Chin. Phys. Lett. 2013, 30, 106801.CrossRefGoogle Scholar
  23. [23]
    Pine, A. S.; Dresselhaus, G. Raman scattering in paratellurite, TeO2. Phys. Rev. B 1972, 5, 4087–4093.CrossRefGoogle Scholar
  24. [24]
    Zhang, J.; Peng, Z. P.; Soni, A.; Zhao, Y. Y.; Xiong, Y.; Peng, B.; Wang, J. B.; Dresselhaus, M. S.; Xiong, Q. H. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 2011, 11, 2407–2414.CrossRefGoogle Scholar
  25. [25]
    Shahil, K. M. F.; Hossain, M. Z.; Teweldebrhan, D.; Balandin, A. A. Crystal symmetry breaking in few-quintuple Bi2Te3 films: Applications in nanometrology of topological insulators. Appl. Phys. Lett. 2010, 96, 153103.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rui He
    • 1
  • Sukrit Sucharitakul
    • 2
  • Zhipeng Ye
    • 1
  • Courtney Keiser
    • 1
  • Tim E. Kidd
    • 1
  • Xuan P. A. Gao
    • 2
  1. 1.Department of PhysicsUniversity of Northern IowaCedar FallsUSA
  2. 2.Department of PhysicsCase Western Reserve UniversityClevelandUSA

Personalised recommendations