Nano Research

, Volume 8, Issue 3, pp 774–789

Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins

  • Mohammed Jamshad
  • Vinciane Grimard
  • Ilaria Idini
  • Tim J. Knowles
  • Miriam R. Dowle
  • Naomi Schofield
  • Pooja Sridhar
  • Yupin Lin
  • Rachael Finka
  • Mark Wheatley
  • Owen R. T. Thomas
  • Richard E. Palmer
  • Michael Overduin
  • Cédric Govaerts
  • Jean-Marie Ruysschaert
  • Karen J. Edler
  • Tim R. Dafforn
Research Article

Abstract

In the past few years there has been a growth in the use of nanoparticles for stabilizing lipid membranes that contain embedded proteins. These bionanoparticles provide a solution to the challenging problem of membrane protein isolation by maintaining a lipid bilayer essential to protein integrity and activity. We have previously described the use of an amphipathic polymer (poly(styrene-co-maleic acid), SMA) to produce discoidal nanoparticles with a lipid bilayer core containing the embedded protein. However the structure of the nanoparticle itself has not yet been determined. This leaves a major gap in understanding how the SMA stabilizes the encapsulated bilayer and how the bilayer relates physically and structurally to an unencapsulated lipid bilayer. In this paper we address this issue by describing the structure of the SMA lipid particle (SMALP) using data from small angle neutron scattering (SANS), electron microscopy (EM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (NMR). We show that the particle is disc shaped containing a polymer “bracelet” encircling the lipid bilayer. The structure and orientation of the individual components within the bilayer and polymer are determined showing that styrene moieties within SMA intercalate between the lipid acyl chains. The dimensions of the encapsulated bilayer are also determined and match those measured for a natural membrane. Taken together, the description of the structure of the SMALP forms the foundation for future development and applications of SMALPs in membrane protein production and analysis.

Keywords

nanoparticles lipid polymer membrane proteins structure detergent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_560_MOESM1_ESM.pdf (663 kb)
Supplementary material, approximately 660 KB.

References

  1. [1]
    Lin, S. H.; Guidotti, G. Purification of membrane proteins. Methods Enzymol. 2009, 463, 619–629.CrossRefGoogle Scholar
  2. [2]
    Lichtenberg, D.; Ahyayauch, H.; Alonso, A.; Goñi, F. M. Detergent solubilization of lipid bilayers: A balance of driving forces. Trends Biochem. Sci. 2013, 38, 85–93.CrossRefGoogle Scholar
  3. [3]
    Bayburt, T. H.; Carlson, J. W.; Sligar, S. G. Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. J. Struct. Biol. 1998, 123, 37–44.CrossRefGoogle Scholar
  4. [4]
    Borch, J.; Torta, F.; Sligar, S. G.; Roepstorff. P. Nanodiscs for immobilization of lipid bilayers and membrane receptors: Kinetic analysis of cholera toxin binding to a glycolipid receptor. Anal. Chem. 2008, 80, 6245–6252.CrossRefGoogle Scholar
  5. [5]
    Bayburt, T. H.; Sligar, S. G. Membrane protein assembly into nanodiscs. FEBS Lett. 2010, 584, 1721–1727.CrossRefGoogle Scholar
  6. [6]
    Denisov, I. G.; Grinkova, Y. V.; Baas, B. J.; Sligar, S. G. The ferrous-dioxygen intermediate in human cytochrome P450 3A4. Substrate dependence of formation and decay kinetics. J. Biol. Chem. 2006, 281, 23313–23318.CrossRefGoogle Scholar
  7. [7]
    Leitz, A. J.; Bayburt, T. H.; Barnakov, A. N.; Springer, B. A.; Sligar, S. G. Functional reconstitution of Beta2-adrenergic receptors utilizing self-assembling nanodisc technology. BioTechniques 2006, 40, 601–612.CrossRefGoogle Scholar
  8. [8]
    Shaw, A. W.; Pureza, V. S.; Sligar, S. G.; Morrissey, J. H. The local phospholipid environment modulates the activation of blood clotting. J. Biol. Chem. 2007, 282, 6556–6563.CrossRefGoogle Scholar
  9. [9]
    Shaw, A. W.; McLean, M. A.; Sligar, S. G. Phospholipid phase transitions in homogeneous nanometer scale bilayer discs. FEBS lett. 2004, 556, 260–264.CrossRefGoogle Scholar
  10. [10]
    Tonge, S. R.; Tighe, B. J. Responsive hydrophobically associating polymers: A review of structure and properties. Adv. Drug Deliver. Rev. 2001, 53, 109–122.CrossRefGoogle Scholar
  11. [11]
    Knowles, T. J.; Finka, R.; Smith, C.; Lin, Y. P.; Dafforn, T.; Overduin, M. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J. Am. Chem. Soc. 2009, 131, 7484–7485.CrossRefGoogle Scholar
  12. [12]
    Orwick, M. C.; Judge, P. J.; Procek, J.; Lindholm, L.; Graziadei, A.; Engel, A.; Gröbner, G.; Watts, A. Detergent-free formation and physicochemical characterization of nanosized lipid-polymer complexes: Lipodisq. Angew. Chem. Int. Ed. 2012, 124, 4731–4735.CrossRefGoogle Scholar
  13. [13]
    Orwick-Rydmark, M.; Lovett, J. E.; Graziadei, A.; Lindholm, L.; Hicks, M. R.; Watts, A. Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer lipodisq particles for functional and biophysical studies. Nano lett. 2012, 12, 4687–4692.CrossRefGoogle Scholar
  14. [14]
    Long, A. R.; O’Brien, C. C.; Malhotra, K.; Schwall, C. T.; Albert, A. D.; Watts, A.; Alder, N. N. A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs. BMC biotechnol. 2013, 13, 41.CrossRefGoogle Scholar
  15. [15]
    Bechinger, B.; Ruysschaert, J. M.; Goormaghtigh, E. Membrane helix orientation from linear dichroism of infrared attenuated total reflection spectra. Biophys. J. 1999, 76, 552–563.CrossRefGoogle Scholar
  16. [16]
    Dalvit, C.; Ramage, P.; Hommel, U. Heteronuclear X-filter 1H PFG double-quantum experiments for the proton resonance assignment of a ligand bound to a protein. J. Magn. Reson. 1998, 131, 148–153.CrossRefGoogle Scholar
  17. [17]
    Hwang, T. L.; Shaka, A. J. Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J. Magn. Reson. 1995, 112, 275–279.CrossRefGoogle Scholar
  18. [18]
    Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Bio. NMR 1995, 6, 277–293.Google Scholar
  19. [19]
    Goddard, T. D.; Kneller, D. G. SPARKY 3. University of California, San Francisco, 2004, 15.Google Scholar
  20. [20]
    Kline, S. R. Reduction and analysis of SANS and USANS data using IGOR Pro. J. Appl. Cryst. 2006, 39, 895–900.CrossRefGoogle Scholar
  21. [21]
    Hayter, J. B.; Penfold, J. An analytic structure factor for macroion solutions. Mol. Phys. 1981, 42, 109–118.CrossRefGoogle Scholar
  22. [22]
    Smith, M. B.; McGillivray, D. J.; Genzer, J.; Lösche, M.; Kilpatrick, P. K. Neutron reflectometry of supported hybrid bilayers with inserted peptide. Soft Matter 2010, 6, 862–865.CrossRefGoogle Scholar
  23. [23]
    Nagle, J. F.; Tristram-Nagle, S. Structure of lipid bilayers. BBA-Rev. Biomembranes 2000, 1469, 159–195.Google Scholar
  24. [24]
    Goormaghtigh, E.; Raussens, V.; Ruysschaert, J. M. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. BBA-Rev. Biomembranes 1999, 1422, 105–185.Google Scholar
  25. [25]
    Liang, C. Y.; Krimm, S. Infrared spectra of high polymers. VI. Polystyrene. J. Polym. Sci. 1958, 27, 241–254.CrossRefGoogle Scholar
  26. [26]
    Raussens, V.; Narayanaswami, V.; Goormaghtigh, E.; Ryan, R. O.; Ruysschaert, J. M. Alignment of the apolipophorin-III alpha-helices in complex with dimyristoylphosphatidylcholine. A unique spatial orientation. J. Biol. Chem. 1995, 270, 12542–12547.CrossRefGoogle Scholar
  27. [27]
    Fringeli, U. P.; Günthard, H. H. Infrared membrane spectroscopy. Mol. Biol. Biochem. Biophys. 1981, 31, 270–332.CrossRefGoogle Scholar
  28. [28]
    Lewis, R. N.; Pohle, W.; McElhaney, R. N. The interfacial structure of phospholipid bilayers: Differential scanning calorimetry and Fourier transform infrared spectroscopic studies of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine and its dialkyl and acyl-alkyl analogs. Biophys. J. 1996, 70, 2736–2746.CrossRefGoogle Scholar
  29. [29]
    Wald, J. H.; Coormaghtigh, E.; Meutter, J. D.; Tuysschaert, J. M.; Jonas, A. Investigation of the lipid domains and apolipoprotein orientation in reconstituted high density lipoproteins by fluorescence and IR methods. J. Biol. Chem. 1990, 265, 20044–20050.Google Scholar
  30. [30]
    Heimburg, T. A model for the lipid pretransition: Coupling of ripple formation with the chain-melting transition. Biophys. J. 2000, 78, 1154–1165.CrossRefGoogle Scholar
  31. [31]
    Blume, A. Apparent molar heat capacities of phospholipids in aqueous dispersion. Effects of chain length and head group structure. Biochem. 1983, 22, 5436–5442.CrossRefGoogle Scholar
  32. [32]
    Fejes Tóth, L. Regular Figures; Pergamon Press: Oxford, 1964; pp 339.Google Scholar
  33. [33]
    Specht, E. program cci, 1999–2014.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mohammed Jamshad
    • 1
  • Vinciane Grimard
    • 2
  • Ilaria Idini
    • 3
  • Tim J. Knowles
    • 4
  • Miriam R. Dowle
    • 5
  • Naomi Schofield
    • 1
  • Pooja Sridhar
    • 4
  • Yupin Lin
    • 1
  • Rachael Finka
    • 1
  • Mark Wheatley
    • 1
  • Owen R. T. Thomas
    • 6
  • Richard E. Palmer
    • 5
  • Michael Overduin
    • 4
  • Cédric Govaerts
    • 2
  • Jean-Marie Ruysschaert
    • 2
  • Karen J. Edler
    • 3
  • Tim R. Dafforn
    • 1
  1. 1.School of BiosciencesUniversity of BirminghamEdgbaston, BirminghamUK
  2. 2.SFMB — CP206/2Université Libre de BruxellesBruxellesBelgium
  3. 3.Department of ChemistryUniversity of BathClaverton Down, BathUK
  4. 4.School of Cancer StudiesUniversity of BirminghamEdgbaston, BirminghamUK
  5. 5.Nanoscale Physics Research Laboratory and PSIBS, School of Physics and AstronomyUniversity of BirminghamEdgbaston, BirminghamUK
  6. 6.School of Chemical EngineeringUniversity of BirminghamEdgbaston, BirminghamUK

Personalised recommendations