Advertisement

Nano Research

, Volume 8, Issue 2, pp 649–665 | Cite as

1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window

  • Irene Villa
  • Anna Vedda
  • Irene Xochilt Cantarelli
  • Marco Pedroni
  • Fabio Piccinelli
  • Marco Bettinelli
  • Adolfo Speghini
  • Marta Quintanilla
  • Fiorenzo Vetrone
  • Ueslen Rocha
  • Carlos Jacinto
  • Elisa Carrasco
  • Francisco Sanz Rodríguez
  • Ángeles Juarranz
  • Blanca del Rosal
  • Dirk H. Ortgies
  • Patricia Haro Gonzalez
  • José García Solé
  • Daniel Jaque GarcíaEmail author
Research Article

Abstract

Novel approaches for high contrast, deep tissue, in vivo fluorescence biomedical imaging are based on infrared-emitting nanoparticles working in the so-called second biological window (1,000–1,400 nm). This allows for the acquisition of high resolution, deep tissue images due to the partial transparency of tissues in this particular spectral range. In addition, the optical excitation with low energy (infrared) photons also leads to a drastic reduction in the contribution of autofluorescence to the in vivo image. Nevertheless, as is demonstrated here, working solely in this biological window does not ensure a complete removal of autofluorescence as the specimen’s diet shows a remarkable infrared fluorescence that extends up to 1,100 nm. In this work, we show how the 1,340 nm emission band of Nd3+ ions embedded in SrF2 nanoparticles can be used to produce autofluorescence free, high contrast in vivo fluorescence images. It is also demonstrated that the complete removal of the food-related infrared autofluorescence is imperative for the development of reliable biodistribution studies.

Keywords

fluorescence imaging rare earth doped nanoparticles nanomedicine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Srinivas, P. R.; Barker, P.; Srivastava, S. Nanotechnology in early detection of cancer. Lab. Invest. 2002, 82, 657–662.CrossRefGoogle Scholar
  2. [2]
    Szelenyi, I. Nanomedicine: Evolutionary and revolutionary developments in the treatment of certain inflammatory diseases. Inflamm. Res. 2012, 61, 1–9.CrossRefGoogle Scholar
  3. [3]
    Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Nanotechnol. 2007, 2, 37–47.Google Scholar
  4. [4]
    Nie, S. M.; Xing, Y.; Kim, G. J.; Simons, J. W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007, 9, 257–288.CrossRefGoogle Scholar
  5. [5]
    Liu, Y.; Miyoshi, H.; Nakamura, M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 2007, 120, 2527–2537.CrossRefGoogle Scholar
  6. [6]
    Davis, S. S. Biomedical applications of nanotechnology -Implications for drug targeting and gene therapy. Trends Biotechnol. 1997, 15, 217–224.CrossRefGoogle Scholar
  7. [7]
    Alivisatos, A. P. Less is more in medicine. Sci. Am. 2001, 285, 66–73.CrossRefGoogle Scholar
  8. [8]
    Bao, G.; Mitragotri, S.; Tong, S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng. 2013, 15, 253–282.CrossRefGoogle Scholar
  9. [9]
    Willner, I.; Willner, B. Biomolecule-based nanomaterials and nanostructures. Nano Lett. 2010, 10, 3805–3815.CrossRefGoogle Scholar
  10. [10]
    Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev 2002, 54, 631–651.CrossRefGoogle Scholar
  11. [11]
    Pankhurst, Q. A.; Thanh, N. T. K.; Jones, S. K.; Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2009, 42, 224001.CrossRefGoogle Scholar
  12. [12]
    Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.CrossRefGoogle Scholar
  13. [13]
    Rojas-Chapana, J. A.; Giersig, M. Multi-walled carbon nanotubes and metallic nanoparticles and their application in biomedicine. J. Nanosci. Nanotechnol. 2006, 6, 316–321.Google Scholar
  14. [14]
    Juzenas, P.; Chen, W.; Sun, Y. P.; Coelho, M. A. N.; Generalov, R.; Generalova, N.; Christensen, I. L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev 2008, 60, 1600–1614.CrossRefGoogle Scholar
  15. [15]
    Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580–1585.CrossRefGoogle Scholar
  16. [16]
    Huff, T. B.; Tong, L.; Zhao, Y.; Hansen, M. N.; Cheng, J. X.; Wei, A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2007, 2, 125–132.CrossRefGoogle Scholar
  17. [17]
    Jaque, D.; Vetrone, F. Luminescence nanothermometry. Nanoscale 2012, 4, 4301–4326.CrossRefGoogle Scholar
  18. [18]
    Gnach, A.; Bednarkiewicz, A. Lanthanide-doped up-converting nanoparticles: Merits and challenges. Nano Today 2012, 7, 532–563.CrossRefGoogle Scholar
  19. [19]
    Crisp, M. T.; Kotov, N. A. Preparation of nanoparticle coatings on surfaces of complex geometry. Nano Lett. 2003, 3, 173–177.CrossRefGoogle Scholar
  20. [20]
    Sperling, R. A.; Parak, W. J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil. Trans. R. Soc. A 2010, 368, 1333–1383.CrossRefGoogle Scholar
  21. [21]
    Cañaveras, F.; Madueño, R.; Sevilla, J. M.; Blázquez, M.; Pineda, T. Role of the functionalization of the gold nanoparticle surface on the formation of bioconjugates with human serum albumin. J. Phys. Chem. C 2012, 116, 10430–10437.CrossRefGoogle Scholar
  22. [22]
    Saravanakumar, G.; Kim, K.; Park, J. H.; Rhee, K.; Kwon, I. C. Current status of nanoparticle-based imaging agents for early diagnosis of cancer and atherosclerosis. J. Biomed. Nanotechnol. 2009, 5, 20–35.CrossRefGoogle Scholar
  23. [23]
    Naccache, R.; Rodriguez, E. M.; Bogdan, N.; Sanz-Rodriguez, F.; de la Cruz, M. D. C. I.; de la Fuente, A. J.; Vetrone, F.; Jaque, D.; Sole, J. G.; Capobianco, J. A. High resolution fluorescence imaging of cancers using lanthanide ion-doped upconverting nanocrystals. Cancers 2012, 4, 1067–1105.CrossRefGoogle Scholar
  24. [24]
    Ruedas-Rama, M. J.; Walters, J. D.; Orte, A.; Hall, E. A. H. Fluorescent nanoparticles for intracellular sensing: A review. Anal. Chim. Acta 2012, 751, 1–23.CrossRefGoogle Scholar
  25. [25]
    Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 2013, 58, R37.CrossRefGoogle Scholar
  26. [26]
    Bhaumik, S.; DePuy, J.; Klimash, J. Strategies to minimize background autofluorescence in live mice during noninvasive fluorescence optical imaging. Lab Animal 2007, 36, 40–43.CrossRefGoogle Scholar
  27. [27]
    Taroni, P.; Pifferi, A.; Torricelli, A.; Comelli, D.; Cubeddu, R. In vivo absorption and scattering spectroscopy of biological tissues. Photochem. Photobiol. Sci. 2003, 2, 124–129.CrossRefGoogle Scholar
  28. [28]
    Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 2003, 7, 626–634.CrossRefGoogle Scholar
  29. [29]
    Smith, A. M.; Mancini, M. C.; Nie, S. M. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.CrossRefGoogle Scholar
  30. [30]
    Venkatachalam, N.; Yamano, T.; Hemmer, E.; Hyodo, H.; Kishimoto, H.; Soga, K. Er3+-doped Y2O3 nanophosphors for near-infrared fluorescence bioimaging applications. J. Am. Ceram. Soc. 2013, 96, 2759–2765.CrossRefGoogle Scholar
  31. [31]
    Hemmer, E.; Venkatachalam, N.; Hyodo, H.; Hattori, A.; Ebina, Y.; Kishimoto, H.; Soga, K. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale 2013, 5, 11339–11361.CrossRefGoogle Scholar
  32. [32]
    Nyk, M.; Kumar, R.; Ohulchanskyy, T. Y.; Bergey, E. J.; Prasad, P. N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 2008, 8, 3834–3838.CrossRefGoogle Scholar
  33. [33]
    Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349.CrossRefGoogle Scholar
  34. [34]
    Wang, F.; Liu, X. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642–5643.CrossRefGoogle Scholar
  35. [35]
    Yang, Y.; Shao, Q.; Deng, R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem. Int. Ed. 2012, 51, 3125–3129.CrossRefGoogle Scholar
  36. [36]
    Hong, G.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L.; Huang, N. F.; Cooke, J. P.; Dai, H. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 2012, 18, 1841–1846.CrossRefGoogle Scholar
  37. [37]
    Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.CrossRefGoogle Scholar
  38. [38]
    Maldiney, T.; Viana, B.; Bessiere, A.; Gourier, D.; Bessodes, M.; Scherman, D.; Richard, C. In vivo imaging with persistent luminescence silicate-based nanoparticles. Opt. Mater. 2013, 35, 1852–1858.CrossRefGoogle Scholar
  39. [39]
    Basavaraju, N.; Sharma, S.; Bessiere, A.; Viana, B.; Gourier, D.; Priolkar, K. R. Red persistent luminescence in MgGa2O4:Cr3+: A new phosphor for in vivo imaging. J. Phys. D: Appl. Phys. 2013, 46, 375401.CrossRefGoogle Scholar
  40. [40]
    Lecointre, A.; Bessiere, A.; Priolkar, K. R.; Gourier, D.; Wallez, G.; Viana, B. Role of manganese in red long-lasting phosphorescence of manganese-doped diopside for in vivo imaging. Mater. Res. Bull. 2013, 48, 1898–1905.CrossRefGoogle Scholar
  41. [41]
    le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J.-P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 9266–9271.CrossRefGoogle Scholar
  42. [42]
    Inoue, Y.; Izawa, K.; Kiryu, S.; Tojo, A.; Ohtomo, K. Diet and abdominal autofluorescence detected by in vivo fluorescence imaging of living mice. Mol. Imaging 2008, 7, 21–27.Google Scholar
  43. [43]
    Troy, T.; Jekic-McMullen, D.; Sambucetti, L.; Rice, B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol. Imaging 2004, 3, 9–23.CrossRefGoogle Scholar
  44. [44]
    Krasnovsky, A. A., Jr.; Kovalev, Y. V. Spectral and kinetic parameters of phosphorescence of triplet chlorophyll a in the photosynthetic apparatus of plants. Biochemistry (Moscow) 2014, 79, 349–361.CrossRefGoogle Scholar
  45. [45]
    Lee, M. R. F.; Scott, M. B.; Veberg-Dahl, A.; Evans, P. R.; Theobald, V. J.; Lundby, F.; Scollan, N. D.; Wold, J.-P. Potential of chlorophyll-rich feed ingredients to improve detection of fecal contamination in the abattoir. J. Food Protect. 2013, 76, 516–522.CrossRefGoogle Scholar
  46. [46]
    Welsher, K.; Sherlock, S. P.; Dai, H. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 8943–8948.CrossRefGoogle Scholar
  47. [47]
    Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. Int. Ed. 2012, 51, 9818–9821.CrossRefGoogle Scholar
  48. [48]
    Li, C.; Zhang, Y.; Wang, M.; Zhang, Y.; Chen, G.; Li, L.; Wu, D.; Wang, Q. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 2014, 35, 393–400.CrossRefGoogle Scholar
  49. [49]
    Zhang, Y.; Zhang, Y.; Hong, G.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G.; Liu, Z.; Dai, H.; Wang, Q. Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 2013, 34, 3639–3646.CrossRefGoogle Scholar
  50. [50]
    Zhang, Y.; Hong, G.; Zhang, Y.; Chen, G.; Li, F.; Dai, H.; Wang, Q. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 2012, 6, 3695–3702.CrossRefGoogle Scholar
  51. [51]
    Du, Y.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470–1471.CrossRefGoogle Scholar
  52. [52]
    Dong, B.; Li, C.; Chen, G.; Zhang, Y.; Zhang, Y.; Deng, M.; Wang, Q. Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem. Mater. 2013, 25, 2503–2509.CrossRefGoogle Scholar
  53. [53]
    Chen, G.; Ohulchanskyy, T. Y.; Liu, S.; Law, W.-C.; Wu, F.; Swihart, M. T.; Ågren, H.; Prasad, P. N. Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 2012, 6, 2969–2977.CrossRefGoogle Scholar
  54. [54]
    Chen, G.; Ohulchanskyy, T. Y.; Kumar, R.; Ågren, H.; Prasad, P. N. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 2010, 4, 3163–3168.CrossRefGoogle Scholar
  55. [55]
    Chen, G.; Shen, J.; Ohulchanskyy, T. Y.; Patel, N. J.; Kutikov, A.; Li, Z.; Song, J.; Pandey, R. K.; Ågren, H.; Prasad, P. N.; Han, G. (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 2012, 6, 8280–8287.CrossRefGoogle Scholar
  56. [56]
    Stouwdan, J. W.; van Veggel, F. C. J. M. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett. 2002, 2, 733–737.CrossRefGoogle Scholar
  57. [57]
    Rocha, U.; Kumar, K. U.; Jacinto, C.; Villa, I.; Sanz-Rodríguez, F.; del Carmen Iglesias de la Cruz, M.; Juarranz, A.; Carrasco, E.; van Veggel, F. C. J. M.; Bovero, E.; et al. Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window. Small 2013, 10, 1141–1154.CrossRefGoogle Scholar
  58. [58]
    Zhou, J. C.; Yang, Z. L.; Dong, W.; Tang, R. J.; Sun, L. D.; Yan, C. H. Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals. Biomaterials 2011, 32, 9059–9067.CrossRefGoogle Scholar
  59. [59]
    Fadeel, B.; Garcia-Bennett, A. E. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 2010, 62, 362–374.CrossRefGoogle Scholar
  60. [60]
    Gautam, A.; van Veggel, F. Synthesis of nanoparticles, their biocompatibility, and toxicity behavior for biomedical applications. J. Mater. Chem. B 2013, 1, 5186–5200.CrossRefGoogle Scholar
  61. [61]
    Boschi, F.; Lo Meo, S.; Rossi, P. L.; Calandrino, R.; Sbarbati, A.; Spinelli, A. E. Optical imaging of alpha emitters: simulations, phantom, and in vivo results. J. Biomed. Opt. 2011, 16, 126011.CrossRefGoogle Scholar
  62. [62]
    Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 2013, 4, 2199.CrossRefGoogle Scholar
  63. [63]
    Rocha, U.; Jacinto da Silva, C.; Ferreira Silva, W.; Guedes, I.; Benayas, A.; Martínez Maestro, L.; Acosta Elias, M.; Bovero, E.; van Veggel, F. C. J. M.; García Solé, J. A.; et al. Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles. ACS Nano 2013, 7, 1188–1199.CrossRefGoogle Scholar
  64. [64]
    Henderson, B.; Imbusch, G. F. Optical Spectroscopy of Inorganic Solids; Oxford Science: New York, 1989.Google Scholar
  65. [65]
    Wang, Y.-F.; Liu, G.-Y.; Sun, L.-D.; Xiao, J.-W.; Zhou, J.-C.; Yan, C.-H. Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 2013, 7, 7200–7206.CrossRefGoogle Scholar
  66. [66]
    Balda, R.; Fernandez, J.; Mendioroz, A.; Adam, J. L.; Boulard, B. Temperature-dependent concentration quenching of Nd3+ fluorescence in fluoride glasses. J. Phys.-Condens. Matter 1994, 6, 913–924.CrossRefGoogle Scholar
  67. [67]
    Serqueira, E. O.; Dantas, N. O.; Monte, A. F. G.; Bell, M. J. V. Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses. J. Non-Cryst. Solids 2006, 352, 3628–3632.CrossRefGoogle Scholar
  68. [68]
    De la Rosa-Cruz, E.; Kumar, G. A.; Diaz-Torres, L. A.; Martinez, A.; Barbosa-Garcia, O. Spectroscopic characterization of Nd3+ ions in barium fluoroborophosphate glasses. Opt. Mater. 2001, 18, 321–329.CrossRefGoogle Scholar
  69. [69]
    Tanabe, S. Optical transitions of rare earth ions for amplifiers: How the local structure works in glass. J. Non-Cryst. Solids 1999, 259, 1–9.CrossRefGoogle Scholar
  70. [70]
    Jaque, D.; Capmany, J.; Luo, Z. D.; Sole, J. G. Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal. J. Phys.-Condens. Matter 1997, 9, 9715–9729.CrossRefGoogle Scholar
  71. [71]
    Dong, N. N.; Pedroni, M.; Piccinelli, F.; Conti, G.; Sbarbati, A.; Ramirez-Hernandez, J. E.; Maestro, L. M.; Iglesias-de la Cruz, M. C.; Sanz-Rodriguez, F.; Juarranz, A.; et al. NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: Multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano 2011, 5, 8665–8671.CrossRefGoogle Scholar
  72. [72]
    Pedroni, M.; Piccinelli, F.; Passuello, T.; Polizzi, S.; Ueda, J.; Haro-Gonzalez, P.; Maestro, L. M.; Jaque, D.; Garcia-Sole, J.; Bettinelli, M.; Speghini, A. Water (H2O and D2O) dispersible NIR-to-NIR upconverting Yb3+/Tm3+ doped MF2 (M = Ca, Sr) colloids: Influence of the host crystal. Cryst. Growth Des. 2013, 13, 4906–4913.CrossRefGoogle Scholar
  73. [73]
    Warrier, A. V. R.; Krishnan, R. S. Raman spectrum of strontium fluoride (SrF2). Naturwissenschaften 1964, 51, 8–9.CrossRefGoogle Scholar
  74. [74]
    Payne, S. A.; Caird, J. A.; Chase, L. L.; Smith, L. K.; Nielsen, N. D.; Krupke, W. F. Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts. J. Opt. Soc. Am. 1991, 8, 726–740.CrossRefGoogle Scholar
  75. [75]
    Krischer, C. Measurement of sound velocities using Bragg diffraction of light and applications to lanthanum fluoride. Appl. Phys. Lett. 1968, 13, 310–311.CrossRefGoogle Scholar
  76. [76]
    Kaminskii, A. A.; Osiko, V. V.; Udovenchik, V. T. Room-temperature induced emission of neodymium-doped SrF2·LaF3 crystals. J. Appl. Spectrosc. 1967, 6, 23–25.CrossRefGoogle Scholar
  77. [77]
    Yang, K.; Zhang, S. A.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. A. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.CrossRefGoogle Scholar
  78. [78]
    Al Faraj, A.; Fauvelle, F.; Luciani, N.; Lacroix, G.; Levy, M.; Cremillieux, Y.; Canet-Soulas, E. In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques. Int. J. Nanomedicine 2011, 6, 351–361.CrossRefGoogle Scholar
  79. [79]
    Liao, W. Y.; Li, H. J.; Chang, M. Y.; Tang, A. C. L.; Hoffman, A. S.; Hsieh, P. C. H. Comprehensive characterizations of nanoparticle biodistribution following systemic injection in mice. Nanoscale 2013, 5, 11079–11086.CrossRefGoogle Scholar
  80. [80]
    Hirn, S.; Semmler-Behnke, M.; Schleh, C.; Wenk, A.; Lipka, J.; Schaeffler, M.; Takenaka, S.; Moeller, W.; Schmid, G.; Simon, U.; et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm. 2011, 77, 407–416.CrossRefGoogle Scholar
  81. [81]
    Xiao, K.; Li, Y.; Luo, J.; Lee, J. S.; Xiao, W.; Gonik, A. M.; Agarwal, R. G.; Lam, K. S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 2011, 32, 3435–3446.CrossRefGoogle Scholar
  82. [82]
    Balogh, L.; Nigavekar, S. S.; Nair, B. M.; Lesniak, W.; Zhang, C.; Sung, L. Y.; Kariapper, M. S. T.; El-Jawahri, A.; Llanes, M.; Bolton, B.; et al. Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine 2007, 3, 281–296.CrossRefGoogle Scholar
  83. [83]
    Kumar, R.; Roy, I.; Ohulchanskky, T. Y.; Vathy, L. A.; Bergey, E. J.; Sajjad, M.; Prasad, P. N. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 2010, 4, 699–708.CrossRefGoogle Scholar
  84. [84]
    Yoshio, T.; Jin, M.; Minfang, Z.; Mei, Y.; Iwao, W.; Sumio, I.; Hiroshi, I.; Masako, Y. Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology 2011, 22, 265106.CrossRefGoogle Scholar
  85. [85]
    Zhang, X. D.; Wu, H. Y.; Wu, D.; Wang, Y. Y.; Chang, J. H.; Zhai, Z. B.; Meng, A. M.; Liu, P. X.; Zhang, L. A.; Fan, F. Y. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomedicine 2010, 5, 771–781.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Irene Villa
    • 1
  • Anna Vedda
    • 1
  • Irene Xochilt Cantarelli
    • 2
  • Marco Pedroni
    • 2
  • Fabio Piccinelli
    • 2
  • Marco Bettinelli
    • 2
  • Adolfo Speghini
    • 2
  • Marta Quintanilla
    • 3
  • Fiorenzo Vetrone
    • 3
  • Ueslen Rocha
    • 4
  • Carlos Jacinto
    • 4
  • Elisa Carrasco
    • 5
  • Francisco Sanz Rodríguez
    • 5
  • Ángeles Juarranz
    • 5
  • Blanca del Rosal
    • 6
  • Dirk H. Ortgies
    • 6
  • Patricia Haro Gonzalez
    • 6
  • José García Solé
    • 6
  • Daniel Jaque García
    • 6
    Email author
  1. 1.Department of Materials ScienceUniversity of Milano-BicoccaMilanoItaly
  2. 2.Dipartimento di BiotecnologieUniversità di Verona and INSTM, UdR VeronaVeronaItaly
  3. 3.Institut National de la Recherche Scientifique-Energie Materiaux et TelecommunicationsUniversité du QuebecVarennesCanada
  4. 4.Grupo de Fotônica e Fluidos Complexos, Instituto de FísicaUniversidade Federal de AlagoasMaceió, AlagoasBrazil
  5. 5.Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  6. 6.Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Campus de CantoblancoUniversidad Autónoma de MadridMadridSpain

Personalised recommendations