Gaudana, R.; Jwala, J.; Boddu, S. H. S.; Mitra, A. K. Recent perspectives in ocular drug delivery. Pharm. Res.
2009, 26, 1197–1216.
Article
Google Scholar
Diebold, Y.; Calonge, M. Applications of nanoparticles in ophthalmology. Prog. Retin. Eye Res.
2010, 29, 596–609.
Article
Google Scholar
Liu, S.; Jones, L.; Gu, F. X. Nanomaterials for ocular drug delivery. Macromol. Biosci.
2012, 12, 608–620.
Article
Google Scholar
Cho, H. K.; Cheong, I. W.; Lee, J. M.; Kim, J. H. Polymeric nanoparticles, micelles and polymersomes from amphiphilic block copolymer. Korean. J. Chem. Eng.
2010, 27, 731–740.
Article
Google Scholar
Subbiah, R.; Veerapandian, M.; Yun, K. S. Nanoparticles: Functionalization and multifunctional applications in biomedical sciences. Curr. Med. Chem.
2010, 17, 4559–4577.
Article
Google Scholar
Gavini, E.; Chetoni, P.; Cossu, M.; Alvarez, M. G.; Saettone, M. F.; Giunchedi, P. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: In vitro/in vivo studies. Eur. J. Pharm. Biopharm.
2004, 57, 207–212.
Article
Google Scholar
Yoncheva, K.; Vandervoort, J.; Ludwig, A. Development of mucoadhesive poly(lactide-co-glycolide) nanoparticles for ocular application. Pharm. Dev. Technol.
2011, 16, 29–35.
Article
Google Scholar
Gupta, H.; Aqil, M.; Khar, R. K.; Ali, A.; Bhatnagar, A.; Mittal, G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomed-nanotechnol.
2010, 6, 324–333.
Article
Google Scholar
Lee, V. H. L. Review: New directions in the optimization of ocular drug delivery. J. Ocul. Pharmacol.
1990, 6, 157–164.
Article
Google Scholar
Zimmer, A.; Kreuter, J. Microspheres and nanoparticles used in ocular delivery systems. Adv. Drug Deliv. Rev.
1995, 16, 61–73.
Article
Google Scholar
Bazile, D.; Prud□homme, C.; Bassoullet, M. T.; Marlard, M.; Spenlehauer, G.; Veillard, M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci.
1995, 84, 493–498.
Article
Google Scholar
Dhar, S.; Gu, F. X.; Langer, R.; Farokhzad, O. C.; Lippard, S. J. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc. Natl. Acad. Sci. U.S.A.
2008, 105, 17356–17361.
Article
Google Scholar
Dong, Y. and Feng, S.-S. In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy. Biomaterials
2007, 28, 4154–4160.
Article
Google Scholar
Esmaeili, F.; Ghahremani, M. H.; Ostad, S. N.; Atyabi, F.; Seyedabadi, M.; Malekshahi, M. R.; Amini, M.; Dinarvand, R. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J. Drug Target.
2008, 16, 415–423.
Article
Google Scholar
Gao, Y.; Sun, Y.; Ren, F.; Gao, S. PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev. Ind. Pharm.
2010, 36, 1131–1138.
Article
Google Scholar
Vega, E.; Egea, M. A.; Calpena, A. C.; Espina, M.; Garcia, M. L. Role of hydroxypropyl-β-cyclodextrin on freeze-dried and gamma-irradiated PLGA and PLGA-PEG diblock copolymer nanospheres for ophthalmic flurbiprofen delivery. Int. J. Nanomedicine
2012, 7, 1357–1371.
Article
Google Scholar
Yang, J.; Yan, J.; Zhou, Z.; Amsden, B. G. Dithiol-PEG-PDLLA micelles: Preparation and evaluation as potential topical ocular delivery vehicle. Biomacromolecules
2014, 15, 1346–1354
Article
Google Scholar
Verma, M. S.; Liu, S.; Chen, Y. Y.; Meerasa, A.; Gu, F. X. Size-tunable nanoparticles composed of Dextran-b-poly(d,l-lactide) for drug delivery applications. Nano. Res.
2012, 5, 49–61.
Article
Google Scholar
Goodwin, A. P.; Tabakman, S. M.; Welsher, K.; Sherlock, S. P.; Prencipe, G.; Dai, H. Phospholipid-Dextran with a single coupling point: A useful amphiphile for functionalization of nanomaterials. J. Am. Chem. Soc.
2009, 131, 289–296.
Article
Google Scholar
Ludwig, A. The use of mucoadhesive polymers in ocular drug delivery. Adv. Drug Deliv. Rev.
2005, 57, 1595–1639.
Article
Google Scholar
Shaikh, R.; Raj Singh, T. R.; Garland, M. J.; Woolfson, A. D.; Donnelly, R. F. Mucoadhesive drug delivery systems. J. Pharm. Bioall.
2011, 3, 89–100.
Article
Google Scholar
Khutoryanskiy, V. V. Advances in mucoadhesion and mucoadhesive polymers. Macromol. Biosci.
2011, 11, 748–764.
Article
Google Scholar
du Toit, L. C.; Pillay, V.; Choonara, Y. E.; Govender, T.; Carmichael, T. Ocular drug delivery-A look towards nanobioadhesives. Expert Opin. Drug Deliv.
2011, 8, 71–94.
Article
Google Scholar
Li, N.; Zhuang, C.; Wang, M.; Sui, C.; Pan, W. Low molecular weight chitosan-coated liposomes for ocular drug delivery: In vitro and in vivo studies. Drug Deliv.
2012, 19, 28–35.
Article
Google Scholar
Mahmoud, A. A.; El-Feky, G. S.; Kamel, R.; Awad, G. E. A. Chitosan/sulfobutylether-beta-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int. J. Pharm.
2011, 413, 229–236.
Article
Google Scholar
Abdelbary, G. Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm. Dev. Technol.
2011, 8, 44–56.
Article
Google Scholar
Li, N.; Zhuang, C.; Wang, M.; Sun, X.; Nie, S.; Pan, W. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int. J. Pharm.
2009, 379, 131–138.
Article
Google Scholar
De Campos, A. M.; Sanchez, A.; Alonso, M. J. Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm.
2001, 224, 159–168.
Article
Google Scholar
Matsumoto, A.; Cabral, H.; Sato, N.; Kataoka, K.; Miyahara, Y. Assessment of tumor metastasis by the direct determination of cell-membrane sialic acid expression. Angew. Chem. Int. Edit.
2010, 49, 5494–5497.
Article
Google Scholar
Matsumoto, A.; Sato, N.; Cabral, H.; Kataoka, K.; Miyahara, Y. Self-assembled molecular gate field effect transistor for label free sialic acid detection at cell membrane. Eurosensor XXIV Conference
2010, 5, 926–929.
Google Scholar
Matsumoto, A.; Sato, N.; Kataoka, K.; Miyahara, Y. Noninvasive sialic acid detection at cell membrane by using phenylboronic acid modified self-assembled monolayer gold electrode. J. Am. Chem. Soc.
2009, 131, 12022–12023.
Article
Google Scholar
Ivanov, A. E.; Eccles, J.; Panahi, H. A.; Kumar, A.; Kuzimenkova, M. V.; Nilsson, L.; Bergenstahl, B.; Long, N.; Phillips, G. J.; Mikhalovsky, S. V.; et al. Boronate-containing polymer brushes: Characterization, interaction with saccharides and mammalian cancer cells. J. Biomed. Mater. Res. A.
2009, 88A, 213–225.
Article
Google Scholar
Liu, A.; Peng, S.; Soo, J. C.; Kuang, M.; Chen, P.; Duan, H. Quantum dots with phenylboronic acid tags for specific labeling of sialic acids on living cells. Anal. Chem.
2011, 83, 1124–1130.
Article
Google Scholar
Otsuka, H.; Uchimura, E.; Koshino, H.; Okano, T.; Kataoka, K. Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J. Am. Chem. Soc.
2003, 125, 3493–3502.
Article
Google Scholar
Cheng, C.; Zhang, X.; Wang, Y.; Sun, L.; Li, C. Phenylboronic acid-containing block copolymers: Synthesis, self-assembly, and application for intracellular delivery of proteins. New J. Chem.
2012, 36, 1413–1421.
Article
Google Scholar
Deshayes, S.; Cabral, H.; Ishii, T.; Miura, Y.; Kobayashi, S.; Yamashita, T.; Matsumoto, A.; Miyahara, Y.; Nishiyama, N.; Kataoka, K. Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J. Am. Chem. Soc.
2013, 135, 15501–15507.
Article
Google Scholar
Liu, S.; Jones, L.; Gu, F. X. Development of mucoadhesive drug delivery system using phenylboronic acid functionalized poly(d,l-lactide)-b-Dextran nanoparticles. Macromol. Biosci.
2012, 12, 1622–1626.
Article
Google Scholar
Shen, J.; Wang, Y.; Ping, Q.; Xiao, Y.; Huang, X. Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J. Controlled Release
2009, 137, 217–223.
Article
Google Scholar
Vijay, A. K.; Sankaridurg, P.; Zhu, H.; Willcox, M. D. P. Guinea pig models of acute keratitis responses. Cornea
2009, 28, 1153–1159.
Article
Google Scholar
Cole, N.; Hume, E. B. H.; Vijay, A. K.; Sankaridurg, P.; Kumar, N.; Willcox, M. D. P. In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Invest. Ophthalmol. Vis. Sci.
2010, 5, 390–395.
Article
Google Scholar
Diebold, Y.; Jarrin, M.; Saez, V.; Carvalho, E. L. S.; Orea, M.; Calonge, M.; Seijo, B.; Alonso, M. J. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials
2007, 28, 1553–1564.
Article
Google Scholar
Dursun, D.; Wang, M.; Monroy, D.; Li, D. Q.; Lokeshwar, B. L.; Stern, M. E.; Pflugfelder, S. C. A mouse model of keratoconjunctivitis sicca. Invest. Ophthalmol. Vis. Sci.
2002, 43, 632–638.
Google Scholar
Bromba, C.; Carrie, P.; Chui, J. K. W.; Fyles, T. M. Phenyl boronic acid complexes of diols and hydroxyacids. Supramol. Chem.
2009, 21, 81–88.
Article
Google Scholar
Shiomori, K.; Ivanov, A. E.; Galaev, I. Y.; Kawano, Y.; Mattiasson, B. Thermoresponsive properties of sugar sensitive copolymer of N-isopropylacrylamide and 3-(acrylamido)phenylboronic acid. Macromol. Chem. Physic.
2004, 205, 27–34.
Article
Google Scholar
Kitano, S.; Kataoka, K.; Koyama, Y.; Okano, T.; Sakurai, Y. Glucose-responsive complex-formation between poly(vinyl alcohol) and poly(n-vinyl-2-pyrrolidone) with pendent phenylboronic acid moieties. Makromol. Chem-Rapid.
1991, 12, 227–233.
Article
Google Scholar
Wang, Y.; Zhang, X.; Han, Y.; Cheng, C.; Li, C. pH- and glucose-sensitive glycopolymer nanoparticles based on phenylboronic acid for triggered release of insulin. Carbohydr. Polym.
2012, 89, 124–131.
Article
Google Scholar
Lee, D.; Shirley, S. A.; Lockey, R. F.; Mohapatra, S. S. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Resp. Res.
2006, 7, 112.
Article
Google Scholar
Yuan, X.-B.; Li, H.; Yuan, Y. Preparation of cholesterol-modified chitosan self-aggregated nanoparticles for delivery of drugs to ocular surface. Carbohydr. Polym.
2006, 65, 337–345.
Article
Google Scholar
Hermans, K.; Van Den Plas, D.; Schreurs, E.; Weyenberg, W.; Ludwig, A. Cytotoxicity and anti-inflammatory activity of Cyclosporine A loaded PLGA nanoparticles for ocular use. Pharmazie
2014, 69, 32–37.
Google Scholar
Shen, J.; Deng, Y.; Jin, X.; Ping, Q.; Su, Z.; Li, L. Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for Cyclosporine A: Improving in vivo ocular distribution. Int. J. Pharm.
2010, 402, 248–253.
Article
Google Scholar
Aksungur, P.; Demirbilek, M.; Denkbas, E. B.; Vandervoort, J.; Ludwig, A.; Unlu, N. Development and characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: Cellular toxicity, uptake, and kinetic studies. J. Controlled Release
2011, 151, 286–294.
Article
Google Scholar
Basaran, E.; Yenilmez, E.; Berkman, M. S.; Buyukkoroglu, G.; Yazan, Y. Chitosan nanoparticles for ocular delivery of Cyclosporine A. J. Microencapsul.
2014, 31, 49–57.
Article
Google Scholar
Dong, Y. C.; Feng, S. S. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials
2004, 25, 2843–2849.
Article
Google Scholar
Musumeci, T.; Ventura, C. A.; Giannone, I.; Ruozi, B.; Montenegro, L.; Pignatello, R.; Puglisi, G. PLA/PLGA nanoparticles for sustained release of docetaxel. Int. J. Pharm.
2006, 325, 172–179.
Article
Google Scholar
Francis, M. F.; Lavoie, L.; Winnik, F. M.; Leroux, J.-C. Solubilization of cyclosporin A in Dextran-g-polyethyleneglycolalkyl ether polymeric micelles. Eur. J. Pharm. Biopharm.
2003, 56, 337–346.
Article
Google Scholar
Aliabadi, H. M.; Mahmud, A.; Sharifabadi, A. D.; Lavasanifar, A. Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of Cyclosporine A. J. Controlled Release
2005, 104, 301–311.
Article
Google Scholar
Velluto, D.; Demurtas, D.; Hubbell, J. A. PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release: Cyclosporin A as an example. Mol. Pharm.
2008, 5, 632–642.
Article
Google Scholar
Mondon, K.; Zeisser-Labouebe, M.; Gurny, R.; Moeller, M. Novel cyclosporin A formulations using MPEG-hexyl-substituted polylactide micelles: A suitability study. Eur. J. Pharm. Biopharm.
2011, 77, 56–65.
Article
Google Scholar
Yang, W. Q.; Gao, X. M.; Wang, B. H. Boronic acid compounds as potential pharmaceutical agents. Med. Res. Rev.
2003, 23, 346–368.
Article
Google Scholar
Toshida, H.; Nakayasu, K.; Kanai, A. Effect of cyclosporin A eyedrops on tear secretion in rabbit. Jpn. J. Ophthalmol.
1998, 42, 168–173.
Article
Google Scholar
Stern, M. E.; Gao, J. P.; Siemasko, K. F.; Beuerman, R. W.; Pflugfelder, S. C. The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp. Eye Res.
2004, 78, 409–416.
Article
Google Scholar
Keklikci, U.; Soker, S. I.; Sakalar, Y. B.; Unlu, K.; Ozekinci, S.; Tunik, S. Efficacy of topical cyclosporin A 0.05% in conjunctival impression cytology specimens and clinical findings of severe vernal keratoconjunctivitis in children. Jpn. J. Ophthalmol.
2008, 52, 357–362.
Article
Google Scholar