Phenylboronic acid modified mucoadhesive nanoparticle drug carriers facilitate weekly treatment of experimentallyinduced dry eye syndrome


Topical formulations, commonly applied for treatment of anterior eye diseases, require frequent administration due to rapid clearance from the ocular surface, typically through the lacrimal drainage system or through over-spillage onto the lids. We report on a mucoadhesive nanoparticle drug delivery system that may be used to prolong the precorneal residence time of encapsulated drugs. The nanoparticles were formed from self-assembly of block copolymers composed of poly(d, l-lactide) and Dextran. The enhanced mucoadhesion properties were achieved by surface functionalizing the nanoparticles with phenylboronic acid. The nanoparticles encapsulated up to 12 wt.% of Cyclosporine A (CycA) and sustained the release for up to five days at a clinically relevant dose, which led us to explore the therapeutic efficacy of the formulation with reduced administration frequency. By administering CycA-loaded nanoparticles to dry eye-induced mice once a week, inflammatory infiltrates were eliminated and the ocular surface completely recovered. The same once a week dosage of the nanoparticles also showed no signs of physical irritation or inflammatory responses in acute (1 week) and chronic (12 weeks) studies in healthy rabbit eyes. These findings indicate that the nanoparticles may significantly reduce the frequency of administration for effective treatment of anterior eye diseases without causing ocular irritation.

This is a preview of subscription content, access via your institution.


  1. [1]

    Gaudana, R.; Jwala, J.; Boddu, S. H. S.; Mitra, A. K. Recent perspectives in ocular drug delivery. Pharm. Res. 2009, 26, 1197–1216.

    Article  Google Scholar 

  2. [2]

    Diebold, Y.; Calonge, M. Applications of nanoparticles in ophthalmology. Prog. Retin. Eye Res. 2010, 29, 596–609.

    Article  Google Scholar 

  3. [3]

    Liu, S.; Jones, L.; Gu, F. X. Nanomaterials for ocular drug delivery. Macromol. Biosci. 2012, 12, 608–620.

    Article  Google Scholar 

  4. [4]

    Cho, H. K.; Cheong, I. W.; Lee, J. M.; Kim, J. H. Polymeric nanoparticles, micelles and polymersomes from amphiphilic block copolymer. Korean. J. Chem. Eng. 2010, 27, 731–740.

    Article  Google Scholar 

  5. [5]

    Subbiah, R.; Veerapandian, M.; Yun, K. S. Nanoparticles: Functionalization and multifunctional applications in biomedical sciences. Curr. Med. Chem. 2010, 17, 4559–4577.

    Article  Google Scholar 

  6. [6]

    Gavini, E.; Chetoni, P.; Cossu, M.; Alvarez, M. G.; Saettone, M. F.; Giunchedi, P. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: In vitro/in vivo studies. Eur. J. Pharm. Biopharm. 2004, 57, 207–212.

    Article  Google Scholar 

  7. [7]

    Yoncheva, K.; Vandervoort, J.; Ludwig, A. Development of mucoadhesive poly(lactide-co-glycolide) nanoparticles for ocular application. Pharm. Dev. Technol. 2011, 16, 29–35.

    Article  Google Scholar 

  8. [8]

    Gupta, H.; Aqil, M.; Khar, R. K.; Ali, A.; Bhatnagar, A.; Mittal, G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomed-nanotechnol. 2010, 6, 324–333.

    Article  Google Scholar 

  9. [9]

    Lee, V. H. L. Review: New directions in the optimization of ocular drug delivery. J. Ocul. Pharmacol. 1990, 6, 157–164.

    Article  Google Scholar 

  10. [10]

    Zimmer, A.; Kreuter, J. Microspheres and nanoparticles used in ocular delivery systems. Adv. Drug Deliv. Rev. 1995, 16, 61–73.

    Article  Google Scholar 

  11. [11]

    Bazile, D.; Prud□homme, C.; Bassoullet, M. T.; Marlard, M.; Spenlehauer, G.; Veillard, M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci. 1995, 84, 493–498.

    Article  Google Scholar 

  12. [12]

    Dhar, S.; Gu, F. X.; Langer, R.; Farokhzad, O. C.; Lippard, S. J. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 17356–17361.

    Article  Google Scholar 

  13. [13]

    Dong, Y. and Feng, S.-S. In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy. Biomaterials 2007, 28, 4154–4160.

    Article  Google Scholar 

  14. [14]

    Esmaeili, F.; Ghahremani, M. H.; Ostad, S. N.; Atyabi, F.; Seyedabadi, M.; Malekshahi, M. R.; Amini, M.; Dinarvand, R. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J. Drug Target. 2008, 16, 415–423.

    Article  Google Scholar 

  15. [15]

    Gao, Y.; Sun, Y.; Ren, F.; Gao, S. PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev. Ind. Pharm. 2010, 36, 1131–1138.

    Article  Google Scholar 

  16. [16]

    Vega, E.; Egea, M. A.; Calpena, A. C.; Espina, M.; Garcia, M. L. Role of hydroxypropyl-β-cyclodextrin on freeze-dried and gamma-irradiated PLGA and PLGA-PEG diblock copolymer nanospheres for ophthalmic flurbiprofen delivery. Int. J. Nanomedicine 2012, 7, 1357–1371.

    Article  Google Scholar 

  17. [17]

    Yang, J.; Yan, J.; Zhou, Z.; Amsden, B. G. Dithiol-PEG-PDLLA micelles: Preparation and evaluation as potential topical ocular delivery vehicle. Biomacromolecules 2014, 15, 1346–1354

    Article  Google Scholar 

  18. [18]

    Verma, M. S.; Liu, S.; Chen, Y. Y.; Meerasa, A.; Gu, F. X. Size-tunable nanoparticles composed of Dextran-b-poly(d,l-lactide) for drug delivery applications. Nano. Res. 2012, 5, 49–61.

    Article  Google Scholar 

  19. [19]

    Goodwin, A. P.; Tabakman, S. M.; Welsher, K.; Sherlock, S. P.; Prencipe, G.; Dai, H. Phospholipid-Dextran with a single coupling point: A useful amphiphile for functionalization of nanomaterials. J. Am. Chem. Soc. 2009, 131, 289–296.

    Article  Google Scholar 

  20. [20]

    Ludwig, A. The use of mucoadhesive polymers in ocular drug delivery. Adv. Drug Deliv. Rev. 2005, 57, 1595–1639.

    Article  Google Scholar 

  21. [21]

    Shaikh, R.; Raj Singh, T. R.; Garland, M. J.; Woolfson, A. D.; Donnelly, R. F. Mucoadhesive drug delivery systems. J. Pharm. Bioall. 2011, 3, 89–100.

    Article  Google Scholar 

  22. [22]

    Khutoryanskiy, V. V. Advances in mucoadhesion and mucoadhesive polymers. Macromol. Biosci. 2011, 11, 748–764.

    Article  Google Scholar 

  23. [23]

    du Toit, L. C.; Pillay, V.; Choonara, Y. E.; Govender, T.; Carmichael, T. Ocular drug delivery-A look towards nanobioadhesives. Expert Opin. Drug Deliv. 2011, 8, 71–94.

    Article  Google Scholar 

  24. [24]

    Li, N.; Zhuang, C.; Wang, M.; Sui, C.; Pan, W. Low molecular weight chitosan-coated liposomes for ocular drug delivery: In vitro and in vivo studies. Drug Deliv. 2012, 19, 28–35.

    Article  Google Scholar 

  25. [25]

    Mahmoud, A. A.; El-Feky, G. S.; Kamel, R.; Awad, G. E. A. Chitosan/sulfobutylether-beta-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int. J. Pharm. 2011, 413, 229–236.

    Article  Google Scholar 

  26. [26]

    Abdelbary, G. Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm. Dev. Technol. 2011, 8, 44–56.

    Article  Google Scholar 

  27. [27]

    Li, N.; Zhuang, C.; Wang, M.; Sun, X.; Nie, S.; Pan, W. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int. J. Pharm. 2009, 379, 131–138.

    Article  Google Scholar 

  28. [28]

    De Campos, A. M.; Sanchez, A.; Alonso, M. J. Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm. 2001, 224, 159–168.

    Article  Google Scholar 

  29. [29]

    Matsumoto, A.; Cabral, H.; Sato, N.; Kataoka, K.; Miyahara, Y. Assessment of tumor metastasis by the direct determination of cell-membrane sialic acid expression. Angew. Chem. Int. Edit. 2010, 49, 5494–5497.

    Article  Google Scholar 

  30. [30]

    Matsumoto, A.; Sato, N.; Cabral, H.; Kataoka, K.; Miyahara, Y. Self-assembled molecular gate field effect transistor for label free sialic acid detection at cell membrane. Eurosensor XXIV Conference 2010, 5, 926–929.

    Google Scholar 

  31. [31]

    Matsumoto, A.; Sato, N.; Kataoka, K.; Miyahara, Y. Noninvasive sialic acid detection at cell membrane by using phenylboronic acid modified self-assembled monolayer gold electrode. J. Am. Chem. Soc. 2009, 131, 12022–12023.

    Article  Google Scholar 

  32. [32]

    Ivanov, A. E.; Eccles, J.; Panahi, H. A.; Kumar, A.; Kuzimenkova, M. V.; Nilsson, L.; Bergenstahl, B.; Long, N.; Phillips, G. J.; Mikhalovsky, S. V.; et al. Boronate-containing polymer brushes: Characterization, interaction with saccharides and mammalian cancer cells. J. Biomed. Mater. Res. A. 2009, 88A, 213–225.

    Article  Google Scholar 

  33. [33]

    Liu, A.; Peng, S.; Soo, J. C.; Kuang, M.; Chen, P.; Duan, H. Quantum dots with phenylboronic acid tags for specific labeling of sialic acids on living cells. Anal. Chem. 2011, 83, 1124–1130.

    Article  Google Scholar 

  34. [34]

    Otsuka, H.; Uchimura, E.; Koshino, H.; Okano, T.; Kataoka, K. Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J. Am. Chem. Soc. 2003, 125, 3493–3502.

    Article  Google Scholar 

  35. [35]

    Cheng, C.; Zhang, X.; Wang, Y.; Sun, L.; Li, C. Phenylboronic acid-containing block copolymers: Synthesis, self-assembly, and application for intracellular delivery of proteins. New J. Chem. 2012, 36, 1413–1421.

    Article  Google Scholar 

  36. [36]

    Deshayes, S.; Cabral, H.; Ishii, T.; Miura, Y.; Kobayashi, S.; Yamashita, T.; Matsumoto, A.; Miyahara, Y.; Nishiyama, N.; Kataoka, K. Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J. Am. Chem. Soc. 2013, 135, 15501–15507.

    Article  Google Scholar 

  37. [37]

    Liu, S.; Jones, L.; Gu, F. X. Development of mucoadhesive drug delivery system using phenylboronic acid functionalized poly(d,l-lactide)-b-Dextran nanoparticles. Macromol. Biosci. 2012, 12, 1622–1626.

    Article  Google Scholar 

  38. [38]

    Shen, J.; Wang, Y.; Ping, Q.; Xiao, Y.; Huang, X. Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J. Controlled Release 2009, 137, 217–223.

    Article  Google Scholar 

  39. [39]

    Vijay, A. K.; Sankaridurg, P.; Zhu, H.; Willcox, M. D. P. Guinea pig models of acute keratitis responses. Cornea 2009, 28, 1153–1159.

    Article  Google Scholar 

  40. [40]

    Cole, N.; Hume, E. B. H.; Vijay, A. K.; Sankaridurg, P.; Kumar, N.; Willcox, M. D. P. In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Invest. Ophthalmol. Vis. Sci. 2010, 5, 390–395.

    Article  Google Scholar 

  41. [41]

    Diebold, Y.; Jarrin, M.; Saez, V.; Carvalho, E. L. S.; Orea, M.; Calonge, M.; Seijo, B.; Alonso, M. J. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials 2007, 28, 1553–1564.

    Article  Google Scholar 

  42. [42]

    Dursun, D.; Wang, M.; Monroy, D.; Li, D. Q.; Lokeshwar, B. L.; Stern, M. E.; Pflugfelder, S. C. A mouse model of keratoconjunctivitis sicca. Invest. Ophthalmol. Vis. Sci. 2002, 43, 632–638.

    Google Scholar 

  43. [43]

    Bromba, C.; Carrie, P.; Chui, J. K. W.; Fyles, T. M. Phenyl boronic acid complexes of diols and hydroxyacids. Supramol. Chem. 2009, 21, 81–88.

    Article  Google Scholar 

  44. [44]

    Shiomori, K.; Ivanov, A. E.; Galaev, I. Y.; Kawano, Y.; Mattiasson, B. Thermoresponsive properties of sugar sensitive copolymer of N-isopropylacrylamide and 3-(acrylamido)phenylboronic acid. Macromol. Chem. Physic. 2004, 205, 27–34.

    Article  Google Scholar 

  45. [45]

    Kitano, S.; Kataoka, K.; Koyama, Y.; Okano, T.; Sakurai, Y. Glucose-responsive complex-formation between poly(vinyl alcohol) and poly(n-vinyl-2-pyrrolidone) with pendent phenylboronic acid moieties. Makromol. Chem-Rapid. 1991, 12, 227–233.

    Article  Google Scholar 

  46. [46]

    Wang, Y.; Zhang, X.; Han, Y.; Cheng, C.; Li, C. pH- and glucose-sensitive glycopolymer nanoparticles based on phenylboronic acid for triggered release of insulin. Carbohydr. Polym. 2012, 89, 124–131.

    Article  Google Scholar 

  47. [47]

    Lee, D.; Shirley, S. A.; Lockey, R. F.; Mohapatra, S. S. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Resp. Res. 2006, 7, 112.

    Article  Google Scholar 

  48. [48]

    Yuan, X.-B.; Li, H.; Yuan, Y. Preparation of cholesterol-modified chitosan self-aggregated nanoparticles for delivery of drugs to ocular surface. Carbohydr. Polym. 2006, 65, 337–345.

    Article  Google Scholar 

  49. [49]

    Hermans, K.; Van Den Plas, D.; Schreurs, E.; Weyenberg, W.; Ludwig, A. Cytotoxicity and anti-inflammatory activity of Cyclosporine A loaded PLGA nanoparticles for ocular use. Pharmazie 2014, 69, 32–37.

    Google Scholar 

  50. [50]

    Shen, J.; Deng, Y.; Jin, X.; Ping, Q.; Su, Z.; Li, L. Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for Cyclosporine A: Improving in vivo ocular distribution. Int. J. Pharm. 2010, 402, 248–253.

    Article  Google Scholar 

  51. [51]

    Aksungur, P.; Demirbilek, M.; Denkbas, E. B.; Vandervoort, J.; Ludwig, A.; Unlu, N. Development and characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: Cellular toxicity, uptake, and kinetic studies. J. Controlled Release 2011, 151, 286–294.

    Article  Google Scholar 

  52. [52]

    Basaran, E.; Yenilmez, E.; Berkman, M. S.; Buyukkoroglu, G.; Yazan, Y. Chitosan nanoparticles for ocular delivery of Cyclosporine A. J. Microencapsul. 2014, 31, 49–57.

    Article  Google Scholar 

  53. [53]

    Dong, Y. C.; Feng, S. S. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 2004, 25, 2843–2849.

    Article  Google Scholar 

  54. [54]

    Musumeci, T.; Ventura, C. A.; Giannone, I.; Ruozi, B.; Montenegro, L.; Pignatello, R.; Puglisi, G. PLA/PLGA nanoparticles for sustained release of docetaxel. Int. J. Pharm. 2006, 325, 172–179.

    Article  Google Scholar 

  55. [55]

    Francis, M. F.; Lavoie, L.; Winnik, F. M.; Leroux, J.-C. Solubilization of cyclosporin A in Dextran-g-polyethyleneglycolalkyl ether polymeric micelles. Eur. J. Pharm. Biopharm. 2003, 56, 337–346.

    Article  Google Scholar 

  56. [56]

    Aliabadi, H. M.; Mahmud, A.; Sharifabadi, A. D.; Lavasanifar, A. Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of Cyclosporine A. J. Controlled Release 2005, 104, 301–311.

    Article  Google Scholar 

  57. [57]

    Velluto, D.; Demurtas, D.; Hubbell, J. A. PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release: Cyclosporin A as an example. Mol. Pharm. 2008, 5, 632–642.

    Article  Google Scholar 

  58. [58]

    Mondon, K.; Zeisser-Labouebe, M.; Gurny, R.; Moeller, M. Novel cyclosporin A formulations using MPEG-hexyl-substituted polylactide micelles: A suitability study. Eur. J. Pharm. Biopharm. 2011, 77, 56–65.

    Article  Google Scholar 

  59. [59]

    Yang, W. Q.; Gao, X. M.; Wang, B. H. Boronic acid compounds as potential pharmaceutical agents. Med. Res. Rev. 2003, 23, 346–368.

    Article  Google Scholar 

  60. [60]

    Toshida, H.; Nakayasu, K.; Kanai, A. Effect of cyclosporin A eyedrops on tear secretion in rabbit. Jpn. J. Ophthalmol. 1998, 42, 168–173.

    Article  Google Scholar 

  61. [61]

    Stern, M. E.; Gao, J. P.; Siemasko, K. F.; Beuerman, R. W.; Pflugfelder, S. C. The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp. Eye Res. 2004, 78, 409–416.

    Article  Google Scholar 

  62. [62]

    Keklikci, U.; Soker, S. I.; Sakalar, Y. B.; Unlu, K.; Ozekinci, S.; Tunik, S. Efficacy of topical cyclosporin A 0.05% in conjunctival impression cytology specimens and clinical findings of severe vernal keratoconjunctivitis in children. Jpn. J. Ophthalmol. 2008, 52, 357–362.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Frank X. Gu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Chang, C.N., Verma, M.S. et al. Phenylboronic acid modified mucoadhesive nanoparticle drug carriers facilitate weekly treatment of experimentallyinduced dry eye syndrome. Nano Res. 8, 621–635 (2015).

Download citation


  • biocompatibility
  • copolymer
  • mucoadhesion
  • nanoparticle
  • drug delivery
  • ophthalmology