Nano Research

, Volume 7, Issue 12, pp 1820–1831 | Cite as

Ageing mechanisms and reliability of graphene-based electrodes

  • Yuanyuan Shi
  • Yanfeng Ji
  • Fei Hui
  • Hai-Hua Wu
  • Mario Lanza
Research Article


The development of flexible transparent electrodes for next generation devices has been appointed as the major topic in carbon electronics research for the next five years. Among all candidate materials tested to date, graphene and graphene based nanocomposites have shown the highest performance. Although some incipient anti-oxidation tests have been reported, in-deep ageing studies to assess the reliability of carbon-based electrodes have never been performed before. In this work, we present a disruptive methodology to assess the ageing mechanisms of graphene electrodes, which is also extensible to other carbonbased and two-dimensional materials. After performing accelerated oxidative tests, we exhaustively analyze the yield of the electrodes combining nanoscale and device level experiments with Weibull probabilistic analyses and tunneling current simulation, based on the Fowler-Nordheim/Direct-Tunneling models. Our experiments and calculations reveal that an ultra-thin oxide layer can be formed on the pristine surface of graphene. We quantitatively analyze the consequences of this layer on the properties of the electrodes, and observed a change in the conduction mode at the interface (from Ohmic to Schottky), an effect that should be considered in the design of future graphene-based devices. Future mass production of carbon-based devices should include similar reliability studies, and the methodologies presented here (including the accelerated tests, characterization and modeling) may help other scientists to move from lab prototypes towards industrial device production.


electrode local oxidation conductive atomic force microscopy (CAFM) tunneling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_542_MOESM1_ESM.pdf (2.8 mb)
Supplementary material, approximately 2.79 MB.


  1. [1]
    Novoselov, K. S.; Falko, V. I.; Colombo, L. P.; Gellert, R.; Schwab M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.CrossRefGoogle Scholar
  2. [2]
    Son, D. I.; Kwon, B. W.; Park, D. H.; Seo, W. S.; Yi, Y.; Angadi, B.; Lee, C. L.; Choi, W. K. Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 2012, 7, 465–471.CrossRefGoogle Scholar
  3. [3]
    Zhang, Y.; Li, X.; Wang, L.; Yi, X.; Wu, D.; Zhu, H.; Wang, G. Enhanced light emission of GaN-based diodes with a NiOx/graphene hybrid electrode. Nanoscale 2012, 4, 5852–5855.CrossRefGoogle Scholar
  4. [4]
    Gao, K.; Shao, Z.; Wu, X.; Wang, X.; Zhang, Y.; Wang, W.; Wang, F. Paper-based transparent flexible thin film supercapacitors. Nanoscale 2013, 5, 5307–5311.CrossRefGoogle Scholar
  5. [5]
    Wang, J.; Liang, M.; Fang, Y.; Qiu, T.; Zhang, J.; Zhi, L. Rod-Coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 2012, 24, 2874–2878.CrossRefGoogle Scholar
  6. [6]
    Gomez De Arco, L.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, C. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 2010, 4, 2865–2873.CrossRefGoogle Scholar
  7. [7]
    Wu, J.; Agrawal, M.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 2009, 4, 43–48.CrossRefGoogle Scholar
  8. [8]
    Lee, D.; Lee, H.; Ahn, Y.; Jeong, Y.; Lee, D. Y.; Lee, Y. Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale 2013, 5, 7750–7755.CrossRefGoogle Scholar
  9. [9]
    British Broadcasting Corporation. Technology news section. (accessed on March 14, 2014).
  10. [10]
    European Union research. Graphene technology: Roadmaps to applications. (accessed on April 4, 2014).
  11. [11]
    Lee, J. H.; Lee, E. K.; Joo, W. J.; Jang, Y.; Kim, B. S.; Lim, J. Y.; Choi, S. H.; Ahn, S. J.; Ahn, J. R.; Park, M. H.; et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286–289.CrossRefGoogle Scholar
  12. [12]
    Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.CrossRefGoogle Scholar
  13. [13]
    Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539–541.CrossRefGoogle Scholar
  14. [14]
    Yu, G.; Cao, A.; Lieber, C. M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2007, 2, 372–377.CrossRefGoogle Scholar
  15. [15]
    Wu, Z.; Chen, Z.; Du, X.; Logan, M. J.; Sippel, J.; Nikolou, M.; Karamas, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.CrossRefGoogle Scholar
  16. [16]
    Park, J.-U.; Nam, S.; Lee, M.-S.; Lieber, C. M. Synthesis of monolithic graphene-graphite integrated electronics. Nat. Mater. 2012, 11, 120–125.CrossRefGoogle Scholar
  17. [17]
    Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 2004, 430, 61–65.CrossRefGoogle Scholar
  18. [18]
    De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductive ratios. ACS Nano 2009, 3, 1767–1774.CrossRefGoogle Scholar
  19. [19]
    Zhu, Y.; Sun, Z.; Yan, Z.; Jin, Z.; Tour, J. M. Rational design of hybrid graphene films for high-performance transparent electrodes. ACS Nano 2011, 5, 6472–6479.CrossRefGoogle Scholar
  20. [20]
    Yu, H. K.; Dong, W. J.; Jung, G. H.; Lee, J. L. Three-dimensional danobranched indium-tin-oxide anode for organic solar cells. ACS Nano 2011, 5, 8026–8032.CrossRefGoogle Scholar
  21. [21]
    Kee, Y. Y.; Tan, S. S.; Yong, T. K.; Nee, C. H.; Yap, S. S.; Tou, T. Y.; Sáfrán, G.; Horváth, Z. E.; Moscatello, J. P.; Yap, Y. K. Low-temperature synthesis of indium tin oxide nanowires as the transparent electrodes for organic light emitting devices. Nanotechnology 2012, 23, 025706.CrossRefGoogle Scholar
  22. [22]
    Research portal of the European Union. Graphene flagship project (Horizon 2020). (accessed on 4th of April 2014).
  23. [23]
    Graphene Investing. Graphene info online site. (accessed on April 4, 2014).
  24. [24]
    Jeong, H. Y.; Kim, J. Y.; Kim, J. W.; Hwang, J. O.; Kim, J.-E.; Lee, J. Y.; Yoon, T. H.; Cho, B. J.; Kim, S. O.; Ruoff, R. S.; et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 2010, 10, 4381–4386.CrossRefGoogle Scholar
  25. [25]
    García de Abajo, F. J. Graphene nanophotonics. Science 2013, 339, 917–918.CrossRefGoogle Scholar
  26. [26]
    Chen, J. N.; Badioli, M.; Alonso-González, P.; Thongrattanasiri, S.; Huth, F.; Osmond, J.; Spasenović, M.; Centeno, A.; Pesquera, A.; Godignon, P.; et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 2012, 487, 77–81.Google Scholar
  27. [27]
    Lee, M. S.; Lee, K.; Kim, S. Y.; Lee, H.; Park, J.; Choi, K. H.; Kim, H. K.; Kim, D. G.; Lee, D. Y.; Nam, S. W.; et al. High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 2013, 13, 2814–2821.CrossRefGoogle Scholar
  28. [28]
    Schriver, M.; Regan, W.; Gannett, W. J.; Zaniewski, A. M.; Crommie, M. F.; Zettl, A. Graphene as a long-term metal oxidation barrier: Worse than nothing. ACS Nano 2013, 7, 5763–5768.CrossRefGoogle Scholar
  29. [29]
    Holt, J. K.; Park, H. G.; Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312, 1034–1037.CrossRefGoogle Scholar
  30. [30]
    Rafiee, J.; Mi, X.; Gullapalli, H.; Thomas, A. V.; Yavari, F.; Shi, Y.; Ajayan, P. M.; Koratkar, N. A. Wetting transparency of graphene. Nat. Mater. 2012, 11, 217–222.CrossRefGoogle Scholar
  31. [31]
    Lanza, M.; Wang, Y.; Gao, T.; Bayerl, A.; Porti, M.; Nafria, M.; Zhou, Y. Bo.; Jing, G. Y.; Zhang, Y. F.; Liu, Z. F.; et al. Electrical and mechanical performance of graphene sheets exposed to oxidative environments. Nano Res. 2013, 6, 485–495.CrossRefGoogle Scholar
  32. [32]
    Chen, S. S.; Brown, L.; Levendorf, M.; Cai, W. W.; Ju, S. Y.; Edgeworth, J.; Li, X. S.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D.; et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011, 5, 1321–1327.CrossRefGoogle Scholar
  33. [33]
    Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.CrossRefGoogle Scholar
  34. [34]
    Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.CrossRefGoogle Scholar
  35. [35]
    Chen, R.; Das, S. R.; Jeong, C.; Khan, M. R.; Janes, D. B.; Alam, M. A. Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes. Adv. Funct. Mater. 2013, 23, 5150–5158.CrossRefGoogle Scholar
  36. [36]
    Novoselov, K. Technology: Rapid progress in producing graphene. Nature 2014, 505, 291–291.CrossRefGoogle Scholar
  37. [37]
    Frammelsberger, W.; Benstetter, G.; Kiely, J.; Stamp, R. CAFM-based thickness determination of thin and ultra-thin SiO2 films by use of different conductive-coated probe tips. Appl. Surf. Sci. 2007, 253, 3615–3626.CrossRefGoogle Scholar
  38. [38]
    Lanza, M.; Porti, M.; Nafría, M.; Benstetter, G.; Frammelsberger, W.; Ranzinger, H.; Lodermeier, E.; Jaschke, G. Influence of the manufacturing process on the Electrical properties of thin (<4 nm) hafnium based high-k stacks observed with CAFM. Microelectron. Reliab. 2007, 47, 1424–1428.CrossRefGoogle Scholar
  39. [39]
    Félix, L. A.; Sirena, M.; Guzmán, L. A. A.; Sutter, J. G.; Vargas, S. P.; Steren, L. B.; Bernard, R.; Trastoy, J.; Villegas, J. E.; Briático, J.; et al. Structural and electrical characterization of ultra-thin SrTiO3 tunnel barriers grown over YBa2Cu3O7 electrodes for the development of high Tc Josephson junctions. Nanotechnology 2012, 23, 495715.CrossRefGoogle Scholar
  40. [40]
    Weinberg, Z. A. On tunneling in metal-oxide-silicon structures. J. Appl. Phys. 1982, 53, 5052–5056.CrossRefGoogle Scholar
  41. [41]
    Azumi, K.; Kanada, A.; Seo, M.; Mizuno, T. Removal of oxide layer on SUS304 using high-voltage discharging polarization. Electrochim. Acta 2006, 52, 4463–4470.CrossRefGoogle Scholar
  42. [42]
    Wilk, G. D.; Wallace, R. M. Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon. Appl. Phys. Lett. 1999, 74, 2854–2856.CrossRefGoogle Scholar
  43. [43]
    Zhang, Y.; Ziegler, D.; Salmeron, M. Charge trapping states at the SiO2-oligothiophene monolayer interface in field effect transistors studied by Kelvin probe force microscopy. ACS Nano 2013, 7, 8258–8265.CrossRefGoogle Scholar
  44. [44]
    Bakulin, A. A.; Neutzner, S.; Bakker, H. J.; Ottaviani, L.; Barakel, D.; Chen, Z. Charge trapping dynamics in PbS colloidal quantum dot photovoltaic devices. ACS Nano 2013, 7, 8771–8779.CrossRefGoogle Scholar
  45. [45]
    Lanza, M.; Bayerl, A.; Gao, T.; Porti, M.; Nafria, M.; Jing, G.; Zhang, Y.; Liu, Z.; Duan, H. Graphene-coated atomic force microscope tips for reliable nanoscale electrical characterization. Adv. Mater. 2013, 25, 1440–1444.CrossRefGoogle Scholar
  46. [46]
    Ahmad, M.; Han, S. A.; Tien, D. H.; Jung, J.; Seoa, Y. Local conductance measurement of graphene layer using conductive atomic force microscopy. J. Appl. Phys. 2011, 110, 054307.CrossRefGoogle Scholar
  47. [47]
    Liao, Z. M.; Han, B. H.; Zhou, Y. B.; Yu, D. P. Hysteresis reversion in graphene field-effect transistors. J. Chem. Phys. 2010, 133, 044703.CrossRefGoogle Scholar
  48. [48]
    Chen, X. Y.; Seo, D. H.; Seo, S.; Chung, H.; Wong, H. S. P. Graphene interconnect lifetime: A reliability analysis. IEEE Electron Device Lett. 2012, 33, 1604–1606.CrossRefGoogle Scholar
  49. [49]
    Cress, C. D.; Champlain, J. G.; Esqueda, I. S.; Robinson, J. T.; Friedman, A. L.; McMorrow, J. J. Total ionizing dose induced charge carrier scattering in graphene devices. IEEE Trans. Nuclear Sci. 2012, 59, 3045–3053.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yuanyuan Shi
    • 1
  • Yanfeng Ji
    • 1
  • Fei Hui
    • 1
  • Hai-Hua Wu
    • 1
  • Mario Lanza
    • 1
  1. 1.Institute of Functional Nano & Soft MaterialsSoochow UniversitySuzhou, JiangsuChina

Personalised recommendations