Nano Research

, Volume 7, Issue 11, pp 1659–1669 | Cite as

Enhanced photodynamic therapy of mixed phase TiO2(B)/anatase nanofibers for killing of HeLa cells

Research Article

Abstract

Photodynamic therapy (PDT), which is a procedure that uses photosensitizing drug to apply therapy selectively to target sites, has been proven to be a safe treatment for cancers and conditions that may develop into cancers. Nano-sized TiO2 has been regarded as potential photosensitizer for UV light driven PDT. In this study, four types of TiO2 nanofibers were prepared from proton tri-titanate (H2T3O7) nanofiber. The as-obtained nanofibers were demonstrated as efficient photosensitizers for PDT killing of HeLa cells. MTT assay and flow cytometry (FCM) were carried out to evaluate the biocompatibility, percentage of apoptotic cells, and cell viability. The non-cytotoxicity of the as-prepared TiO2 nanofibers in the absence of UV irradiation has also been demonstrated. Under UV light irradiation, the TiO2 nanofibers, particularly the mixed phase nanofibers, displayed much higher cell-killing efficiency than Pirarubicin (THP), which is a common drug to induce the apoptosis of HeLa cells. We ascribe the high cellkilling efficiency of the mixed phase nanofibers to the bandgap edge match and stable interface between TiO2(B) and anatase phases in a single nanofiber, which can inhibit the recombination of the photogenerated electrons and holes. This promotes the charge separation and transfer processes and can produce more reactive oxygen species (ROS) that are responsible for the killing of HeLa cells.

Keywords

photodynamic therapy titanium oxides (TiO2nanomaterials apoptosis mixed phase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fujishima, A.; Hashimoto, K.; Watanabe, H. TiO 2 Photocatalysis: Fundamentals and Applications; BKC, Inc.: Tokyo, 1999.Google Scholar
  2. [2]
    Hoffman, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental application of semiconductor photoctalysis. Chem. Rev. 1995, 95, 69–96.CrossRefGoogle Scholar
  3. [3]
    Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.CrossRefGoogle Scholar
  4. [4]
    Rozhkova, E. A.; Ulasov, I.; Lai, B.; Dimitrijevic, N. M.; Lesniak, M. S.; Rajh, T. A high-performance nanobio photocatalyst for targeted brain cancer therapy. Nano Lett. 2009, 9, 3337–3342.CrossRefGoogle Scholar
  5. [5]
    Songa, M.; Zhanga, R.; Daib, Y.; Gaob, F.; Chia, H.; Lva, G.; Chenb, B.; Wang, X. The in vitro inhibition of multidrug resistance by combined nanoparticulate titanium dioxide and UV irradiation. Biomaterials 2006, 27, 4230–4238.CrossRefGoogle Scholar
  6. [6]
    Seo, J. W.; Chung, H.; Kim, M. Y.; Lee, J.; Choi, I. H.; Cheon, J. Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment. Small 2007, 3, 850–853.CrossRefGoogle Scholar
  7. [7]
    Higuchi, Y. Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem. Pharmacol. 2003, 66, 1527–1535.CrossRefGoogle Scholar
  8. [8]
    Huang, P.; Pandoli, O.; Wang, X.; Wang, Z.; Li, Z.; Zhang, C.; Chen, F.; Lin, J.; Cui, D.; Chen, X. Chiral guanosine 5′-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 2012, 5, 630–639.CrossRefGoogle Scholar
  9. [9]
    Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325–337.CrossRefGoogle Scholar
  10. [10]
    Brooker, R. J. Genetics: Analysis and Principles (4th Ed.). McGraw-Hill Science: 2011.Google Scholar
  11. [11]
    Townley, H. E.; Kim, J.; Dobson, P. J. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles. Nanoscale 2012, 4, 5043–5050.CrossRefGoogle Scholar
  12. [12]
    Ackroyd, R.; Brown, K. C.; Reed, M. The history of photodetection and photodynamic therapy. Photochem. Photobiol. 2001, 74, 656–669.CrossRefGoogle Scholar
  13. [13]
    Yang, D.; Liu, H.; Zheng, Z.; Yuan, Y.; Zhao, J. C.; Waclawik, E. R.; Ke, X.; Zhu, H. An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J. Am. Chem. Soc. 2009, 131, 17885–17893.CrossRefGoogle Scholar
  14. [14]
    Zheng, Z.; Liu, H.; Ye, J.; Zhao, J.; Waclawik, E. R.; Zhu, H. Structure and contribution to photocatalytic activity of the interfaces in nanofibers with mixed anatase and TiO2(B) phases, J. Mol. Catal. A: Chem. 2010, 316, 75–82.CrossRefGoogle Scholar
  15. [15]
    Yang, D.; Zhao, J.; Liu, H.; Moses, A.; Liu, X.; Zhang, H.; Zheng, Z.; Bell, J.; Zhao, J.; Zhu, H. Enhancing photoactivity of TiO2(B)/anatase core-shell nanofibers by selectively doping cerium ions into the TiO2(B) core. Chem. Eur. J. 2013, 19, 5113–5119.CrossRefGoogle Scholar
  16. [16]
    Hayashi, K.; Nakamura, M.; Sakamoto, W.; Yogo, T.; Kori, T.; Ishimura, K. Formation of TiO2 nanostructures by enzyme-mediated self-assembly for the destruction of macrophages. Chem. Mater. 2011, 23, 3341–3347CrossRefGoogle Scholar
  17. [17]
    Zheng, Z.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y. Synthesis of hierarchical TiO2 microspheres with enhanced photocatalytic activity. Chem. Eur. J. 2010, 16, 11266–11270.CrossRefGoogle Scholar
  18. [18]
    Xu, J.; Sun, Y.; Huang, J.; Chen, C.; Liu, G.; Jiang, Y.; Zhao, Y.; Jiang, Z. Photokilling cancer cells using highly cell-specific antibody-TiO2 bioconjugates and electroporation. Bioelectrochem. 2007, 71, 217–222.CrossRefGoogle Scholar
  19. [19]
    Feng, X.; Zhang, S.; Lou, X. Controlling silica coating thickness on TiO2 nanoparticles for effective photodynamic therapy. Colloid. Surf. B: Biointerf. 2013, 107, 220–226.CrossRefGoogle Scholar
  20. [20]
    Zhu, H. Y.; Gao, X. P.; Lan, Y.; Song, D. Y.; Xi, Y. X.; Zhao, J. C. Hydrogen titanate nanofibers covered with anatase nanocrystals: A delicate structure achieved by the wet chemistry reaction of the titanate nanofibers. J. Am. Chem. Soc. 2004, 126, 8380–8381.CrossRefGoogle Scholar
  21. [21]
    Lan, Y.; Gao, X. P.; Zhu, H. Y.; Zheng, Z. F.; Yan, T. Y.; Wu, F.; Ringer, S. P.; Song, D. Y. Titanate nanotubes and nanorods prepared from rutile powder. Adv. Funct. Mater. 2005, 15, 1310–1318.CrossRefGoogle Scholar
  22. [22]
    Zhu, H. Y.; Lan, Y.; Gao, X. P.; Ringer, S. P.; Zheng, Z. F.; Song, D. Y.; Zhao, J. C. Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions J. Am. Chem. Soc. 2005, 127, 6730–6736.CrossRefGoogle Scholar
  23. [23]
    Li, Q.; Wang, X.; Lu, X.; Tian, H.; Jiang, H.; Lv, G.; Guo, D.; Wu, C.; Chen, B. The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers. Biomaterials 2009, 30, 4708–4715.CrossRefGoogle Scholar
  24. [24]
    Li, J.; Wang, X.; Jiang, H.; Lu, X.; Zhu, Y.; Chen, B. New strategy of photodynamic treatment of TiO2 nanofibers combined with celastrol for HepG2 proliferation in vitro, Nanoscale 2011, 3, 3115–3122.CrossRefGoogle Scholar
  25. [25]
    Yang, D.; Zheng, Z.; Zhu, H.; Liu, H.; Gao, X. Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv. Mater. 2008, 20, 2777–2781.CrossRefGoogle Scholar
  26. [26]
    Yang, D.; Sarina, S.; Zhu, H.; Liu, H.; Zheng, Z.; Xie, M.; Smith, S. V.; Komarneni, S. Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angew. Chem. Int. Ed. 2011, 50, 10594–10598.CrossRefGoogle Scholar
  27. [27]
    Yang, D.; Zheng, Z.; Yuan, Y.; Zhu, H.; Liu, H.; Waclawik, E. R.; Ke, X.; Xie, M. Sorption induced structural deformation of sodium hexa-titanate nanofibers and their ability to selectively trap radioactive Ra(II) ions from water. Phys. Chem. Chem. Phys. 2010, 12, 1271–1277.CrossRefGoogle Scholar
  28. [28]
    Liu, H.; Waclawik, E.; Zheng, Z.; Yang, D.; Ke, X.; Zhu, H.; Frost. R. TEM Investigation and FBB model explanation to the phase relationships between titanates and titanium dioxides. J. Phys. Chem. C. 2010, 114, 11430–11434.CrossRefGoogle Scholar
  29. [29]
    Oleinick, N. L.; Morris, R. L.; Belichenko, I. The role of apoptosis in response to photodynamic therapy: What, where, why, and how. Photochem. Photobiol. Sci. 2002, 1, 1–21.CrossRefGoogle Scholar
  30. [30]
    Oleinick, N. L. Apoptosis in response to photodynamic therapy. Photodynamics News 1998, 6, 8–9.Google Scholar
  31. [31]
    Koffyberg, F. P.; Dwight, K.; Wold, A. Interband transitions of semiconducting oxides determined from photoelectrolysis spectra. Solid State Commun. 1979, 30, 433–437.CrossRefGoogle Scholar
  32. [32]
    Kim, Y. I.; Atherton, S. J.; Brigham, E. S.; Mallouk, T. E. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. J. Phys. Chem. B 1993, 97, 11802–11810.CrossRefGoogle Scholar
  33. [33]
    Enright, B.; Fitzmaurice, D. Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film. J. Phys. Chem. 1996, 100, 1027–1035.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Blood Transfusion, the Affiliated Hospital of Medical CollegeQingdao UniversityQingdaoChina
  2. 2.Department of ImmunologyMedical College of Qingdao UniversityQingdaoChina
  3. 3.Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province; College of Chemical and Environmental EngineeringQingdao UniversityQingdaoChina
  4. 4.Queensland Micro- and Nanotechnology Centre (QMNC)Griffith University, NathanBrisbaneAustralia
  5. 5.International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, College of Chemistry, Chemical and Environmental EngineeringXi’an Jiaotong UniversityXi’anChina
  6. 6.Australian Centre for Microscopy and Microanalysis (ACMM)the University of SydneySydneyAustralia

Personalised recommendations