Skip to main content
Log in

Enhanced photodynamic therapy of mixed phase TiO2(B)/anatase nanofibers for killing of HeLa cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT), which is a procedure that uses photosensitizing drug to apply therapy selectively to target sites, has been proven to be a safe treatment for cancers and conditions that may develop into cancers. Nano-sized TiO2 has been regarded as potential photosensitizer for UV light driven PDT. In this study, four types of TiO2 nanofibers were prepared from proton tri-titanate (H2T3O7) nanofiber. The as-obtained nanofibers were demonstrated as efficient photosensitizers for PDT killing of HeLa cells. MTT assay and flow cytometry (FCM) were carried out to evaluate the biocompatibility, percentage of apoptotic cells, and cell viability. The non-cytotoxicity of the as-prepared TiO2 nanofibers in the absence of UV irradiation has also been demonstrated. Under UV light irradiation, the TiO2 nanofibers, particularly the mixed phase nanofibers, displayed much higher cell-killing efficiency than Pirarubicin (THP), which is a common drug to induce the apoptosis of HeLa cells. We ascribe the high cellkilling efficiency of the mixed phase nanofibers to the bandgap edge match and stable interface between TiO2(B) and anatase phases in a single nanofiber, which can inhibit the recombination of the photogenerated electrons and holes. This promotes the charge separation and transfer processes and can produce more reactive oxygen species (ROS) that are responsible for the killing of HeLa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima, A.; Hashimoto, K.; Watanabe, H. TiO 2 Photocatalysis: Fundamentals and Applications; BKC, Inc.: Tokyo, 1999.

    Google Scholar 

  2. Hoffman, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental application of semiconductor photoctalysis. Chem. Rev. 1995, 95, 69–96.

    Article  Google Scholar 

  3. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.

    Article  Google Scholar 

  4. Rozhkova, E. A.; Ulasov, I.; Lai, B.; Dimitrijevic, N. M.; Lesniak, M. S.; Rajh, T. A high-performance nanobio photocatalyst for targeted brain cancer therapy. Nano Lett. 2009, 9, 3337–3342.

    Article  Google Scholar 

  5. Songa, M.; Zhanga, R.; Daib, Y.; Gaob, F.; Chia, H.; Lva, G.; Chenb, B.; Wang, X. The in vitro inhibition of multidrug resistance by combined nanoparticulate titanium dioxide and UV irradiation. Biomaterials 2006, 27, 4230–4238.

    Article  Google Scholar 

  6. Seo, J. W.; Chung, H.; Kim, M. Y.; Lee, J.; Choi, I. H.; Cheon, J. Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment. Small 2007, 3, 850–853.

    Article  Google Scholar 

  7. Higuchi, Y. Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem. Pharmacol. 2003, 66, 1527–1535.

    Article  Google Scholar 

  8. Huang, P.; Pandoli, O.; Wang, X.; Wang, Z.; Li, Z.; Zhang, C.; Chen, F.; Lin, J.; Cui, D.; Chen, X. Chiral guanosine 5′-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 2012, 5, 630–639.

    Article  Google Scholar 

  9. Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325–337.

    Article  Google Scholar 

  10. Brooker, R. J. Genetics: Analysis and Principles (4th Ed.). McGraw-Hill Science: 2011.

    Google Scholar 

  11. Townley, H. E.; Kim, J.; Dobson, P. J. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles. Nanoscale 2012, 4, 5043–5050.

    Article  Google Scholar 

  12. Ackroyd, R.; Brown, K. C.; Reed, M. The history of photodetection and photodynamic therapy. Photochem. Photobiol. 2001, 74, 656–669.

    Article  Google Scholar 

  13. Yang, D.; Liu, H.; Zheng, Z.; Yuan, Y.; Zhao, J. C.; Waclawik, E. R.; Ke, X.; Zhu, H. An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J. Am. Chem. Soc. 2009, 131, 17885–17893.

    Article  Google Scholar 

  14. Zheng, Z.; Liu, H.; Ye, J.; Zhao, J.; Waclawik, E. R.; Zhu, H. Structure and contribution to photocatalytic activity of the interfaces in nanofibers with mixed anatase and TiO2(B) phases, J. Mol. Catal. A: Chem. 2010, 316, 75–82.

    Article  Google Scholar 

  15. Yang, D.; Zhao, J.; Liu, H.; Moses, A.; Liu, X.; Zhang, H.; Zheng, Z.; Bell, J.; Zhao, J.; Zhu, H. Enhancing photoactivity of TiO2(B)/anatase core-shell nanofibers by selectively doping cerium ions into the TiO2(B) core. Chem. Eur. J. 2013, 19, 5113–5119.

    Article  Google Scholar 

  16. Hayashi, K.; Nakamura, M.; Sakamoto, W.; Yogo, T.; Kori, T.; Ishimura, K. Formation of TiO2 nanostructures by enzyme-mediated self-assembly for the destruction of macrophages. Chem. Mater. 2011, 23, 3341–3347

    Article  Google Scholar 

  17. Zheng, Z.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y. Synthesis of hierarchical TiO2 microspheres with enhanced photocatalytic activity. Chem. Eur. J. 2010, 16, 11266–11270.

    Article  Google Scholar 

  18. Xu, J.; Sun, Y.; Huang, J.; Chen, C.; Liu, G.; Jiang, Y.; Zhao, Y.; Jiang, Z. Photokilling cancer cells using highly cell-specific antibody-TiO2 bioconjugates and electroporation. Bioelectrochem. 2007, 71, 217–222.

    Article  Google Scholar 

  19. Feng, X.; Zhang, S.; Lou, X. Controlling silica coating thickness on TiO2 nanoparticles for effective photodynamic therapy. Colloid. Surf. B: Biointerf. 2013, 107, 220–226.

    Article  Google Scholar 

  20. Zhu, H. Y.; Gao, X. P.; Lan, Y.; Song, D. Y.; Xi, Y. X.; Zhao, J. C. Hydrogen titanate nanofibers covered with anatase nanocrystals: A delicate structure achieved by the wet chemistry reaction of the titanate nanofibers. J. Am. Chem. Soc. 2004, 126, 8380–8381.

    Article  Google Scholar 

  21. Lan, Y.; Gao, X. P.; Zhu, H. Y.; Zheng, Z. F.; Yan, T. Y.; Wu, F.; Ringer, S. P.; Song, D. Y. Titanate nanotubes and nanorods prepared from rutile powder. Adv. Funct. Mater. 2005, 15, 1310–1318.

    Article  Google Scholar 

  22. Zhu, H. Y.; Lan, Y.; Gao, X. P.; Ringer, S. P.; Zheng, Z. F.; Song, D. Y.; Zhao, J. C. Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions J. Am. Chem. Soc. 2005, 127, 6730–6736.

    Article  Google Scholar 

  23. Li, Q.; Wang, X.; Lu, X.; Tian, H.; Jiang, H.; Lv, G.; Guo, D.; Wu, C.; Chen, B. The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers. Biomaterials 2009, 30, 4708–4715.

    Article  Google Scholar 

  24. Li, J.; Wang, X.; Jiang, H.; Lu, X.; Zhu, Y.; Chen, B. New strategy of photodynamic treatment of TiO2 nanofibers combined with celastrol for HepG2 proliferation in vitro, Nanoscale 2011, 3, 3115–3122.

    Article  Google Scholar 

  25. Yang, D.; Zheng, Z.; Zhu, H.; Liu, H.; Gao, X. Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv. Mater. 2008, 20, 2777–2781.

    Article  Google Scholar 

  26. Yang, D.; Sarina, S.; Zhu, H.; Liu, H.; Zheng, Z.; Xie, M.; Smith, S. V.; Komarneni, S. Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angew. Chem. Int. Ed. 2011, 50, 10594–10598.

    Article  Google Scholar 

  27. Yang, D.; Zheng, Z.; Yuan, Y.; Zhu, H.; Liu, H.; Waclawik, E. R.; Ke, X.; Xie, M. Sorption induced structural deformation of sodium hexa-titanate nanofibers and their ability to selectively trap radioactive Ra(II) ions from water. Phys. Chem. Chem. Phys. 2010, 12, 1271–1277.

    Article  Google Scholar 

  28. Liu, H.; Waclawik, E.; Zheng, Z.; Yang, D.; Ke, X.; Zhu, H.; Frost. R. TEM Investigation and FBB model explanation to the phase relationships between titanates and titanium dioxides. J. Phys. Chem. C. 2010, 114, 11430–11434.

    Article  Google Scholar 

  29. Oleinick, N. L.; Morris, R. L.; Belichenko, I. The role of apoptosis in response to photodynamic therapy: What, where, why, and how. Photochem. Photobiol. Sci. 2002, 1, 1–21.

    Article  Google Scholar 

  30. Oleinick, N. L. Apoptosis in response to photodynamic therapy. Photodynamics News 1998, 6, 8–9.

    Google Scholar 

  31. Koffyberg, F. P.; Dwight, K.; Wold, A. Interband transitions of semiconducting oxides determined from photoelectrolysis spectra. Solid State Commun. 1979, 30, 433–437.

    Article  Google Scholar 

  32. Kim, Y. I.; Atherton, S. J.; Brigham, E. S.; Mallouk, T. E. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. J. Phys. Chem. B 1993, 97, 11802–11810.

    Article  Google Scholar 

  33. Enright, B.; Fitzmaurice, D. Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film. J. Phys. Chem. 1996, 100, 1027–1035.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongjiang Yang, Meihua Gao or Ziyang Huo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yang, D., Jing, D. et al. Enhanced photodynamic therapy of mixed phase TiO2(B)/anatase nanofibers for killing of HeLa cells. Nano Res. 7, 1659–1669 (2014). https://doi.org/10.1007/s12274-014-0526-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0526-8

Keywords

Navigation