Skip to main content

Three-dimensional porous graphene sponges assembled with the combination of surfactant and freeze-drying

Abstract

With the combination of surfactant and freeze-drying, we have developed two kinds of graphene spongy structures. On the one hand, using foams of soap bubbles as templates, three-dimensional porous graphene sponges with rich hierarchical pores have been synthesized. Pores of the material contain three levels of length scales, including millimeter, micrometer and nanometer. The structure can be tuned by changing the freezing media, adjusting the stirring rate or adding functional additives. On the other hand, by direct freeze-drying of a graphene oxide/surfactant suspension, a porous framework with directionally aligned pores is prepared. The surfactant gives a better dispersion of graphene oxide sheets, resulting in a high specific surface area. Both of the obtained materials exhibit excellent absorption capacity and good compression performance, providing a broad range of possible applications, such as absorbents, storage media, and carriers.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

    Article  Google Scholar 

  2. [2]

    Li, X. M.; Zhao, T. S.; Wang, K. L.; Yang, Y.; Wei, J. Q.; Kang, F. Y.; Wu, D. H.; Zhu, H. W. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 2011, 27, 12164–12171.

    Article  Google Scholar 

  3. [3]

    Dong, Z. L.; Jiang, C. C.; Cheng, H. H.; Zhao, Y.; Shi, G. Q.; Jiang, L.; Qu, L. T. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 2012, 24, 1856–1861.

    Article  Google Scholar 

  4. [4]

    Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2, 571.

    Article  Google Scholar 

  5. [5]

    Hu, C. G.; Zhao, Y.; Cheng, H. H.; Wang, Y. H.; Dong, Z. L.; Jiang, C. C.; Zhai, X. Q.; Jiang, L.; Qu, L. T. Graphene microtubings: Controlled fabrication and site-specific functionalization. Nano Lett. 2012, 12, 5879–5884.

    Article  Google Scholar 

  6. [6]

    Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.

    Article  Google Scholar 

  7. [7]

    Li, X.; Zhang, R. J.; Yu, W. J.; Wang, K. L.; Wei, J. Q.; Wu, D. H.; Cao, A. Y.; Li, Z. H.; Cheng, Y.; Zheng, Q. S. et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2012, 2, 870.

    Google Scholar 

  8. [8]

    Hu, H.; Zhao, Z. B.; Zhang, R.; Bin, Y. Z.; Qiu, J. S. Polymer casting of ultralight graphene aerogels for the production of conductive nanocomposites with low filling content. J. Mater. Chem. A 2014, 2, 3756–3760.

    Article  Google Scholar 

  9. [9]

    Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219–2223.

    Article  Google Scholar 

  10. [10]

    Zhao, Y.; Hu, C. G.; Hu, Y.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Ed. 2012, 51, 11371–11375.

    Article  Google Scholar 

  11. [11]

    Zhang, J.; Zhao, F.; Zhang, Z. P.; Chen, N.; Qu, L. T. Dimension-tailored functional graphene structures for energy conversion and storage. Nanoscale 2013, 5, 3112–3126.

    Article  Google Scholar 

  12. [12]

    Liang, H. W.; Guan, Q. F.; Chen, L. F.; Zhu, Z.; Zhang, W. J.; Yu, S. H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed. 2012, 51, 5101–5105.

    Article  Google Scholar 

  13. [13]

    Wu, Z. Y.; Li, C.; Liang, H. W.; Chen, J. F.; Yu, S. H. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem. Int. Ed. 2013, 52, 2925–2929.

    Article  Google Scholar 

  14. [14]

    Li, J. R.; Sculley, J.; Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869–932.

    Article  Google Scholar 

  15. [15]

    Ariga, K.; Vinu, A.; Yamauchi, Y.; Ji, Q. M.; Hill, J. P. Nanoarchitectonics for mesoporous materials. Bull. Chem. Soc. Jpn. 2012, 85, 1–32.

    Article  Google Scholar 

  16. [16]

    Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

    Article  Google Scholar 

  17. [17]

    Vickery, J. L.; Patil, A. J.; Mann, S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 2009, 21, 2180–2184.

    Article  Google Scholar 

  18. [18]

    Estevez, L.; Kelarakis, A.; Gong, Q. M.; Da’as, E. H.; Giannelis, E. P. Multifunctional graphene/platinum/nafion hybrids via ice templating. J. Am. Chem. Soc. 2011, 133, 6122–6125.

    Article  Google Scholar 

  19. [19]

    Xiao, X. Y.; Beechem, T. E.; Brumbach, M. T.; Lambert, T. N.; Davis, D. J.; Michael, J. R.; Washburn, C. M.; Wang, J.; Brozik, S. M.; Wheeler, D. R. et al. Lithographically defined three-dimensional graphene structures. ACS Nano 2012, 6, 3573–3579.

    Article  Google Scholar 

  20. [20]

    Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

    Article  Google Scholar 

  21. [21]

    Jiang, X.; Ma, Y. W.; Li, J. J.; Fan, Q. L.; Huang, W. Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage. J. Phys. Chem. C 2010, 114, 22462–22465.

    Article  Google Scholar 

  22. [22]

    Chen, W. F.; Yan, L. F. In situ self-assembly of mild chemical reduction graphene for three-dimensional architecttures. Nanoscale 2011, 3, 3132–3137.

    Article  Google Scholar 

  23. [23]

    Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 2012, 6, 2693–2703.

    Article  Google Scholar 

  24. [24]

    Liu, F.; Seo, T. S. A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv. Funct. Mater. 2010, 20, 1930–1936.

    Article  Google Scholar 

  25. [25]

    Niu, Z. Q.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X. D. A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 2012, 24, 4144–4150.

    Article  Google Scholar 

  26. [26]

    Chen, Y. Q.; Chen, K. W.; Bai, H.; Li, L. Electrochemically reduced graphene porous material as light absorber for light-driven thermoelectric generator. J. Mater. Chem. 2012, 22, 17800–17804.

    Article  Google Scholar 

  27. [27]

    Chen, K. W.; Chen, L. B.; Chen, Y. Q.; Bai, H.; Li, L. Three-dimensional porous graphene-based composite materials: Electrochemical synthesis and application. J. Mater. Chem. 2012, 22, 20968–20976.

    Article  Google Scholar 

  28. [28]

    Sheng, K. X.; Sun, Y. S.; Li, C.; Yuan, W. J.; Shi, G. Q. Ultrahigh-rate supercapacitors based on electrochemically reduced graphene oxide for ac line-filtering. Sci. Rep. 2012, 2, 247.

    Article  Google Scholar 

  29. [29]

    Xie, X.; Zhou, Y. L.; Bi, H. C.; Yin, K. B.; Wan, S.; Sun, L. T. Large-range control of the microstructures and properties of three-dimensional porous graphene. Sci. Rep. 2013, 3, 2117.

    Google Scholar 

  30. [30]

    Sun, H. Y.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2554–2560.

    Article  Google Scholar 

  31. [31]

    Parlett, C. M. A.; Wilson, K.; Lee, A. F. Hierarchical porous materials: Catalytic applications. Chem. Soc. Rev. 2013, 42, 3876–3893.

    Article  Google Scholar 

  32. [32]

    Taguchi, A.; Smatt, J. H.; Lindén, M. Carbon monoliths possessing a hierarchical, fully interconnected porosity. Adv. Mater. 2003, 15, 1209–1211.

    Article  Google Scholar 

  33. [33]

    Piat, R.; Schnack, E. Hierarchical material modeling of carbon/carbon composites. Carbon 2003, 41, 2121–2129.

    Article  Google Scholar 

  34. [34]

    Yin, S. Y.; Zhang, Y. Y.; Kong, J. H.; Zou, C. J.; Li, C. M.; Lu, X. H.; Ma, J.; Boey, F. Y. C.; Chen, X. D. Assembly of graphene sheets into hierarchical structures for high-performance energy storage. ACS Nano 2011, 5, 3831–3838.

    Article  Google Scholar 

  35. [35]

    Yang, S. Y.; Chang, K. H.; Tien, H. W.; Lee, Y. F.; Li, S. M.; Wang, Y. S.; Wang, J. Y.; Ma, C. C. M.; Hu, C. C. Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. J. Mater. Chem. 2011, 21, 2374–2380.

    Article  Google Scholar 

  36. [36]

    Xiao, J.; Mei, D. H.; Li, X. L.; Xu, W.; Wang, D. Y.; Graff, G. L.; Bennett, W. D.; Nie, Z. M.; Saraf, L. V.; Aksay, I. A. et al. Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett. 2011, 11, 5071–5078.

    Article  Google Scholar 

  37. [37]

    Li, X. Y.; Huang, X. L.; Liu, D. P.; Wang, X.; Song, S. Y.; Zhou, L.; Zhang, H. J. Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J. Phys. Chem. C 2011, 115, 21567–21573.

    Article  Google Scholar 

  38. [38]

    Wu, C.; Huang, X. Y.; Wu, X. F.; Qian, R.; Jiang, P. K. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators. Adv. Mater. 2013, 25, 5658–5662.

    Article  Google Scholar 

  39. [39]

    Bi, H. C.; Xie, X.; Yin, K. B.; Zhou, Y. L.; Wan, S.; He, L. B.; Xu, F.; Banhart, F.; Sun, L. T.; Ruoff, R. S. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 2012, 22, 4421–4425.

    Article  Google Scholar 

  40. [40]

    Yao, X.; Yao, H. W.; Li, Y. T. Hierarchically aligned porous scaffold by ice-segregation-induced self-assembly and thermally triggered electrostatic self-assembly of oppositely charged thermosensitive microgels. J. Mater. Chem. 2009, 19, 6516–6520.

    Article  Google Scholar 

  41. [41]

    Saye, R. I.; Sethian, J. A. Multiscale modeling of membrane rearrangement, drainage, and rupture in evolving foams. Science 2013, 340, 720–724.

    Article  Google Scholar 

  42. [42]

    Bi, H. C.; Xie, X.; Yin, K. B.; Zhou, Y. L.; Wan, S.; Ruoff, R. S.; Sun, L. T. Highly enhanced performance of spongy graphene as an oil sorbent. J. Mater. Chem. A 2014, 2, 1652–1656.

    Article  Google Scholar 

  43. [43]

    Zhao, J. P.; Ren, W. C.; Cheng, H. M. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J. Mater. Chem. 2012, 22, 20197–20202.

    Article  Google Scholar 

  44. [44]

    Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhu.

Electronic supplementary material

Supplementary material, approximately 1.08 MB.

Supplementary material, approximately 1.17 MB.

Supplementary material, approximately 1.29 MB.

Supplementary material, approximately 2.31 MB.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Cao, Y., Li, P. et al. Three-dimensional porous graphene sponges assembled with the combination of surfactant and freeze-drying. Nano Res. 7, 1477–1487 (2014). https://doi.org/10.1007/s12274-014-0508-x

Download citation

Keywords

  • graphene sponge
  • hierarchical
  • freezing media
  • porous
  • foams