Nano Research

, Volume 7, Issue 10, pp 1449–1456 | Cite as

Fabrication of high-quality all-graphene devices with low contact resistances

  • Rong Yang
  • Shuang Wu
  • Duoming Wang
  • Guibai Xie
  • Meng Cheng
  • Guole Wang
  • Wei Yang
  • Peng Chen
  • Dongxia Shi
  • Guangyu Zhang
Research Article


All-graphene devices are new class of graphene devices with simple layouts and low contact resistances. Here we report a clean fabrication strategy for all-graphene devices via a defect-assisted anisotropic etching. The as-fabricated graphene is free of contamination and retains the quality of pristine graphene. The contact resistance at room temperature (RT) between a bilayer graphene channel and a multilayer graphene electrode can be as low as ∼5 Ω·μm, the lowest ever achieved experimentally. Our results suggest the feasibility of employing such all-graphene devices in high performance carbon-based integrated circuits.


graphene all-graphene devices thinning contact resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_504_MOESM1_ESM.pdf (1.7 mb)
Supplementary material, approximately 1.63 MB.


  1. [1]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  2. [2]
    Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.CrossRefGoogle Scholar
  3. [3]
    Zhao, P.; Zhang, Q.; Jena, D.; Koswatta, S. O. Influence of metal-graphene contact on the operation and scalability of graphene field-effect transistors. IEEE T. Electron Dev. 2011, 58, 3170–3178.CrossRefGoogle Scholar
  4. [4]
    Nagashio, K.; Nishimura, T.; Kita, K.; Toriumi, A. Metal/graphene contact as a performance killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance. In Proceedings of IEEE International Electron Devices Meeting, Baltimore, USA, 2009, pp 565–568.Google Scholar
  5. [5]
    Xia, F. N.; Perebeinos, V.; Lin, Y. M.; Wu Y. Q.; Avouris, P. The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179–184.CrossRefGoogle Scholar
  6. [6]
    Russoa, S.; Craciuna, M. F.; Yamamoto, M.; Morpurgo, A. F.; Tarucha, S. Contact resistance in graphene-based devices. Physica E 2010, 42, 677–679.CrossRefGoogle Scholar
  7. [7]
    Khatami, Y.; Li, H.; Xu, C.; Banerjee, K. Metal-to-multilayer-graphene contact part I: Contact resistance modeling. IEEE T. Electron Dev. 2012, 59, 2444–2460.CrossRefGoogle Scholar
  8. [8]
    Liu, G. X.; Rumyantsev, S.; Shur, M.; Balandin, A. A. Graphene thickness-graded transistors with reduced electronic noise. Appl. Phys. Lett. 2012, 100, 033103.CrossRefGoogle Scholar
  9. [9]
    Yang, R.; Zhang, L. C.; Wang, Y.; Shi, Z. W.; Shi, D. X.; Gao, H. J.; Wang, E.; Zhang, G. Y. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014–4019.CrossRefGoogle Scholar
  10. [10]
    Shi, Z. W.; Yang, R.; Zhang, L. C.; Wang, Y.; Liu, D. H.; Shi, D. X.; Wang, E.; Zhang, G. Y. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater. 2011, 23, 3061–3065.CrossRefGoogle Scholar
  11. [11]
    Park, J. U.; Nam, S. W.; Lee, M. S.; Lieber, C. M. Synthesis of monolithic graphene-graphite integrated electronics. Nat. Mater. 2012, 11, 120–125.CrossRefGoogle Scholar
  12. [12]
    Dimiev, A.; Kosynkin, D. V.; Sinitskii, A.; Slesarev, A.; Sun, Z. Z.; Tour, J. M. Layer-by-layer removal of graphene for device patterning. Science 2011, 331, 1168–1172.CrossRefGoogle Scholar
  13. [13]
    Lim, W. S.; Kim, Y. Y.; Kim, H.; Jang, S.; Kwon, N.; Park, B. J.; Ahn, J. H.; Chung, I.; Hong, B. H.; Yeom, G. Y. Atomic layer etching of graphene for full graphene device fabrication. Carbon 2012, 50, 429–435.CrossRefGoogle Scholar
  14. [14]
    Han, G. H.; Chae, S. J.; Kim, E. S.; Gunes, F.; Lee, H.; Lee, S. W.; Lee, S. Y.; Lim, S. C.; Jeong, H. K.; Jeong, M. S. et al. Laser thinning for monolayer graphene formation: Heat sink and interference effect. ACS Nano 2011, 5, 263–268.CrossRefGoogle Scholar
  15. [15]
    Jones, J. D.; Shah, R. K.; Verbeck, G. F.; Perez, J. M. The removal of single layers from multi-layer graphene by low energy electron stimulation. Small 2012, 8, 1066–1072.CrossRefGoogle Scholar
  16. [16]
    Yang, X. C.; Tang, S. J.; Ding, G. Q.; Xie, X. M.; Jiang M. H.; Huang, F. Q. Layer-by-layer thinning of graphene by plasma irradiation and post-annealing. Nanotechnology 2012, 23, 025704.CrossRefGoogle Scholar
  17. [17]
    Hazra, K. S.; Rafiee, J.; Rafiee, M. A.; Mathur, A.; Roy, S. S.; McLauhglin, J.; Koratkar, N.; Misra, D. S. Thinning of multilayer graphene to monolayer graphene in a plasma environment. Nanotechnology 2011, 22, 025704.CrossRefGoogle Scholar
  18. [18]
    Shen, C.; Huang, G. S.; Cheng, Y. C.; Cao, R. G.; Ding, F.; Schwingenschlögl, U.; Mei, Y. F. Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment. Nanoscale Res. Lett. 2012, 7, 268.CrossRefGoogle Scholar
  19. [19]
    Wu, S.; Yang, R.; Shi D. X.; Zhang, G. Y. Identification of structural defects in graphitic materials by gas-phase anisotropic etching. Nanoscale 2012, 4, 2005–2009.CrossRefGoogle Scholar
  20. [20]
    Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.CrossRefGoogle Scholar
  21. [21]
    Yang, R.; Shi, Z. W.; Zhang, L. C.; Shi, D. X.; Zhang, G. Y. Observation of Raman G-peak split for graphene nanoribbons with hydrogen-terminated zigzag edges. Nano Lett. 2011, 11, 4083–4088.CrossRefGoogle Scholar
  22. [22]
    Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.CrossRefGoogle Scholar
  23. [23]
    Lehtinen, O.; Kotakoski, J.; Krasheninnikov, A. V.; Tolvanen, A.; Nordlund, K.; Keinonen, J. Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation. Phys. Rev. B 2010, 81, 153401.CrossRefGoogle Scholar
  24. [24]
    Mathew, S.; Chan, T. K.; Zhan, D.; Gopinadhan, K.; Barman, A. R.; Breese, M. B. H.; Dhar, S.; Shen, Z. X.; Venkatesan, T.; Thong, J. T. L. The effect of layer number and substrate on the stability of graphene under MeV protonbeam irradiation. Carbon 2011, 49, 1720–1726.CrossRefGoogle Scholar
  25. [25]
    Wang, Q. H.; Jin, Z.; Kim, K. K.; Hilmer, A. J.; Paulus, G. L. C.; Shih, C. J.; Ham, M. H.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kong, J. et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 2012, 4, 724–732.CrossRefGoogle Scholar
  26. [26]
    Kim, S.; Nah, J.; Jo, I.; Shahrjerdi, D.; Colombo, L.; Yao, Z.; Tutuc, E.; Banerjee, S. K. Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 2009, 94, 062107.CrossRefGoogle Scholar
  27. [27]
    Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643–1648.CrossRefGoogle Scholar
  28. [28]
    Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C. H.; Suenaga, K.; Chiu, P. W. Graphene annealing: How clean can it be? Nano Lett. 2012, 12, 414–419.CrossRefGoogle Scholar
  29. [29]
    Huard, B.; Stander, N.; Sulpizio, J. A.; Goldhaber-Gordon, D. Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys. Rev. B 2008, 78, 121402.CrossRefGoogle Scholar
  30. [30]
    Datta, S. Electronic Transport in Mescoscopic Systems; Cambridge University Press: Cambridge, 1995; pp 57–85.CrossRefGoogle Scholar
  31. [31]
    Partoens, B.; Peeters, F. M. From graphene to graphite: Electronic structure around the K point. Phys. Rev. B 2006, 74, 075404.CrossRefGoogle Scholar
  32. [32]
    Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K. Chiral tunneling and the Klein paradox in graphene. Nat. Phys. 2006, 2, 620–625.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rong Yang
    • 1
  • Shuang Wu
    • 1
  • Duoming Wang
    • 1
  • Guibai Xie
    • 1
  • Meng Cheng
    • 1
  • Guole Wang
    • 1
  • Wei Yang
    • 1
  • Peng Chen
    • 1
  • Dongxia Shi
    • 1
  • Guangyu Zhang
    • 1
    • 2
  1. 1.Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations