Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8


A highly porous and crystalline metal-organic framework (MOF) ZIF-8 has been synthesized and used for the preparation of a supported rhodium nanoparticle catalyst (Rh@ZIF-8). The material has been characterized by PXRD, TEM, EDX, ICP-AES and nitrogen adsorption. The catalytic properties of Rh@ZIF-8 have been investigated in the hydroformylation of alkenes, with different chain length and structure, to give the corresponding aldehydes, and showed high activity. Furthermore, after the reaction was complete, the catalyst could be easily separated from the products by simple decantation and reused five times without a significant decrease in the activity under the investigated conditions.

This is a preview of subscription content, log in to check access.


  1. [1]

    Franke, R.; Selent, D.; Börner, A. Applied hydroformylation. Chem. Rev. 2012, 112, 5675–5732.

    Article  Google Scholar 

  2. [2]

    Metin, O.; Ho, S. F.; Alp, C.; Can, H.; Mankin, M. N.; Gultekin, M. S.; Chi, M. F.; Sun, S. H. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Res. 2013, 6, 10–18.

    Article  Google Scholar 

  3. [3]

    Beller, M.; Cornils, B.; Frohning, C. D.; Kohlpaintner, C. W. Progress in hydroformylation and carbonylation. J. Mol. Catal. A: Chem. 1995, 104, 17–85.

    Article  Google Scholar 

  4. [4]

    Chikkali, S. H.; Vlugt, J. I.; Reek, J. N. H. Hybrid diphosphorus ligands in rhodium catalysed asymmetric hydroformylation. Coord. Chem. Rev. 2014, 262, 1–15.

    Article  Google Scholar 

  5. [5]

    Ungváry, F. Application of transition metals in hydroformylation annual survey covering the year 2006. Coord. Chem. Rev. 2007, 251, 2087–2102.

    Article  Google Scholar 

  6. [6]

    Fernández, P. H.; Benet, B. J.; Vidal, F. A. Small bite-angle P-OP ligands for asymmetric hydroformylation and hydrogenation. Org. Lett. 2013, 15, 3634–3637.

    Article  Google Scholar 

  7. [7]

    Selent, D.; Franke, R.; Kubis, C.; Spannenberg, A.; Baumann, W.; Kreidler, B.; Börner, A. A new diphosphite promoting highly regioselective rhodium-catalyzed hydroformylation. Organometallics 2011, 30, 4509–4514.

    Article  Google Scholar 

  8. [8]

    Doro, F.; Reek, J. N. H.; Leeuwen, P. W. N. M. Isostructural phosphine-phosphite ligands in rhodium-catalyzed asymmetric hydroformylation. Organometallics 2010, 29, 4440–4447.

    Article  Google Scholar 

  9. [9]

    Worthy, A. D.; Joe, C. L.; Lightburn, T. E.; Tan, K. L. Application of a chiral scaffolding ligand in catalytic enantioselective hydroformylation. J. Am. Chem. Soc. 2010, 132, 14757–14759.

    Article  Google Scholar 

  10. [10]

    Chikkali, S. H.; Bellini, R.; Bruin, B.; Vlugt, J. I.; Reek, J. N. H. Highly selective asymmetric Rh-catalyzed hydroformylation of heterocyclic olefins. J. Am. Chem. Soc. 2012, 134, 6607–6616.

    Article  Google Scholar 

  11. [11]

    Wang, X.; Buchwald, S. L. Rh-catalyzed asymmetric hydroformylation of functionalized 1,1-disubstituted olefins. J. Am. Chem. Soc. 2011, 133, 19080–19083.

    Article  Google Scholar 

  12. [12]

    Lightburn, T. E.; Paolis, O. A. D.; Cheng, K. H.; Tan, K. L. Regioselective hydroformylation of allylic alcohols. Org. Lett. 2011, 13, 2686–2689.

    Article  Google Scholar 

  13. [13]

    Chen, C.; Qiao, Y.; Geng, H.; Zhang, X. A novel triphosphoramidite ligand for highly regioselective linear hydroformylation of terminal and internal olefins. Org. Lett. 2013, 15, 1048–1051.

    Article  Google Scholar 

  14. [14]

    Dabbawala, A. A.; Bajaj, H. C.; Jasra, R. V. Rhodium complex of monodentate phosphite as a catalyst for olefins hydroformylation. J. Mol. Catal. A: Chem. 2009, 302, 97–106.

    Article  Google Scholar 

  15. [15]

    Yoneda, N.; Nakagawa, Y.; Mimami, T. Hydroformylation catalyzed by immobilized rhodium complex to polymer support. Catal. Today 1997, 36, 357–364.

    Article  Google Scholar 

  16. [16]

    Huang, L.; He, Y.; Kawi, S. Catalytic studies of aminated MCM-41-tethered rhodium complexes for hydroformylation of 1-octene and styrene. J. Mol. Catal. A: Chem. 2004, 213, 241–249.

    Article  Google Scholar 

  17. [17]

    Riisager, A.; Wasserscheid, P.; Hal, R.; Fehrmann, R. Continuous fixed-bed gas-phase hydroformylation using supported ionic liquid-phase (SILP) Rh catalysts. J. Catal. 2003, 219, 452–455.

    Article  Google Scholar 

  18. [18]

    Zhang, Y.; Nagasaka, K.; Qiu, X.; Tsubaki, N. Low-pressure hydroformylation of 1-hexene over active carbon-supported noble metal catalysts. Appl. Catal. A: Gen. 2004, 276, 103–111.

    Article  Google Scholar 

  19. [19]

    Zhou, W.; He, D. A facile method for promoting activities of ordered mesoporous silica-anchored Rh-P complex catalysts in 1-octene hydroformylation. Green Chem. 2009, 11, 1146–1154.

    Article  Google Scholar 

  20. [20]

    Zhou, W.; He, D. Lengthening alkyl spacers to increase SBA-15-anchored Rh-P complex activities in 1-octene hydroformylation. Chem. Commun. 2008, 5839–5841.

    Google Scholar 

  21. [21]

    Sharma, S. K.; Parikh, P. A.; Jasra, R. V. Hydroformylation of alkenes using heterogeneous catalyst prepared by intercalation of HRh(CO)(TPPTS)3 complex in hydrotalcite. J. Mol. Catal. A: Chem. 2010, 316, 153–162.

    Article  Google Scholar 

  22. [22]

    Liu, N. A.; Yao, Y.; Cha, J. J.; McDowell, M. T.; Han, Y.; Cui, Y. Functionalization of silicon nanowire surfaces with metal-organic frameworks. Nano Res. 2012, 5, 109–116.

    Article  Google Scholar 

  23. [23]

    Paz, F. A. A.; Klinowski, J.; Vilela, S. M. F.; Tomé, J. P. C.; Cavaleiro, J. A. S.; Rocha, J. Ligand design for functional metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 1088–1110.

    Article  Google Scholar 

  24. [24]

    Cohen, S. M. Postsynthetic methods for the functionalization of metal-organic frameworks. Chem. Rev. 2012, 112, 970–1000.

    Article  Google Scholar 

  25. [25]

    O’Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675–702.

    Article  Google Scholar 

  26. [26]

    Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734–777.

    Article  Google Scholar 

  27. [27]

    El-Shall, M. S.; Abdelsayed, V.; Khder, A. S.; Hassan, H. A.; El-Kaderi, H. M.; Reich, T. E. Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101. J. Mater. Chem. 2009, 19, 7625–7631.

    Article  Google Scholar 

  28. [28]

    Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J. Am. Chem. Soc. 2011, 133, 1304–1306.

    Article  Google Scholar 

  29. [29]

    Yuan, B. Z.; Pan, Y. Y.; Li, Y. W.; Yin, B. L.; Jiang, H. F. A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. Angew. Chem. Int. Ed. 2010, 49, 4054–4508.

    Article  Google Scholar 

  30. [30]

    Schröder, F.; Esken, D.; Cokoja, M.; van den Berg, M. W. E.; Lebedev, O. I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach, H. H.; Chaudret, B.; Fischer, R. A. Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: A solid-state reference system for surfactant-stabilized ruthenium colloids. J. Am. Chem. Soc. 2008, 130, 6119–6130.

    Article  Google Scholar 

  31. [31]

    Dhakshinamoorthy, A.; Garcia, H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 5262–5284.

    Article  Google Scholar 

  32. [32]

    Moon, H. R.; Lim, D. W.; Suh, M. P. Fabrication of metal nanoparticles in metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 1807–1824.

    Article  Google Scholar 

  33. [33]

    Zhu, Q. L.; Li, J.; Xu, Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J. Am. Chem. Soc. 2013, 135, 10210–10213.

    Article  Google Scholar 

  34. [34]

    Zahmakiran, M. Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ZIF-8): Synthesis, structural properties and catalytic performance. Dalton. Trans. 2012, 41, 12690–12696.

    Article  Google Scholar 

  35. [35]

    Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 2006, 45, 1557–1559.

    Article  Google Scholar 

  36. [36]

    Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    Article  Google Scholar 

  37. [37]

    Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 2009, 131, 11302–1303.

    Article  Google Scholar 

  38. [38]

    Wang, P.; Zhao, J.; Li, X.; Yang, Y.; Yang, Q.; Li, C. Assembly of ZIF nanostructures around free Pt nanoparticles: Efficient size-selective catalysts for hydrogenation of alkenes under mild conditions. Chem. Commun. 2013, 49, 3330–3332.

    Article  Google Scholar 

  39. [39]

    Li, P. Z.; Aranishi, K.; Xu, Q. ZIF-8 immobilized nickel nanoparticles: Highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chem. Commun. 2012, 48, 3173–3175.

    Article  Google Scholar 

  40. [40]

    Hermannsdörfer, J.; Kempe, R. Selective palladium-loaded MIL-101 catalysts. Chem. Eur. J. 2011, 17, 8071–8077.

    Article  Google Scholar 

  41. [41]

    Bruss, A. J.; Gelesky, M. A.; Machado, G.; Dupont, J. Rh(0) nanoparticles as catalyst precursors for the solventless hydroformylation of olefins. J. Mol. Catal. A: Chem. 2006, 252, 212–218.

    Article  Google Scholar 

  42. [42]

    Vu, T. V.; Kosslick, H.; Schulz, A.; Harloff, J.; Paetzold, E.; Schneider, M.; Radnik, J.; Steinfeldt, N.; Fulda, G.; Kragl, U. Selective hydroformylation of olefins over the rhodium supported large porous metal-organic framework MIL-101. Appl. Catal. A: Gen. 2013, 468, 410–417.

    Article  Google Scholar 

  43. [43]

    Vu, T. V.; Kosslick, H.; Schulz, A.; Harloff, J.; Paetzold, E.; Schneider, M.; Radnik, J.; Kragl, U.; Fulda, G.; Janiak, C.; Tuyen, N. D. Hydroformylation of olefins over rhodium supported metal-organic framework catalysts of different structure. Micropor. Mesopor. Mater. 2013, 177, 135–142.

    Article  Google Scholar 

  44. [44]

    Zeng, Y.; Wang, Y.; Jiang, J.; Jin, Z. Rh nanoparticle catalyzed hydrogenation of olefins in thermoregulated ionic liquid and organic biphase system. Catal. Commun. 2012, 19, 70–73.

    Article  Google Scholar 

  45. [45]

    Sun, Z.; Wang, Y.; Niu, M.; Yi, H.; Jiang, J.; Jin, Z. Poly(ethylene glycol)-stabilized Rh nanoparticles as efficient and recyclable catalysts for hydroformylation of olefins. Catal. Commun. 2012, 27, 78–82.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yadong Li.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, C., Zhao, G., Ji, Y. et al. Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8. Nano Res. 7, 1364–1369 (2014). https://doi.org/10.1007/s12274-014-0501-4

Download citation


  • heterogeneous catalysis
  • supported rhodium
  • catalyst
  • metal-organic framework
  • ZIF-8
  • hydroformylation