Advertisement

Nano Research

, Volume 7, Issue 9, pp 1364–1369 | Cite as

Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8

  • Chao Hou
  • Guofeng Zhao
  • Yongjun Ji
  • Zhiqiang Niu
  • Dingsheng Wang
  • Yadong LiEmail author
Research Article

Abstract

A highly porous and crystalline metal-organic framework (MOF) ZIF-8 has been synthesized and used for the preparation of a supported rhodium nanoparticle catalyst (Rh@ZIF-8). The material has been characterized by PXRD, TEM, EDX, ICP-AES and nitrogen adsorption. The catalytic properties of Rh@ZIF-8 have been investigated in the hydroformylation of alkenes, with different chain length and structure, to give the corresponding aldehydes, and showed high activity. Furthermore, after the reaction was complete, the catalyst could be easily separated from the products by simple decantation and reused five times without a significant decrease in the activity under the investigated conditions.

Keywords

heterogeneous catalysis supported rhodium catalyst metal-organic framework ZIF-8 hydroformylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_501_MOESM1_ESM.pdf (682 kb)
Supplementary material, approximately 636 KB.

References

  1. [1]
    Franke, R.; Selent, D.; Börner, A. Applied hydroformylation. Chem. Rev. 2012, 112, 5675–5732.CrossRefGoogle Scholar
  2. [2]
    Metin, O.; Ho, S. F.; Alp, C.; Can, H.; Mankin, M. N.; Gultekin, M. S.; Chi, M. F.; Sun, S. H. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Res. 2013, 6, 10–18.CrossRefGoogle Scholar
  3. [3]
    Beller, M.; Cornils, B.; Frohning, C. D.; Kohlpaintner, C. W. Progress in hydroformylation and carbonylation. J. Mol. Catal. A: Chem. 1995, 104, 17–85.CrossRefGoogle Scholar
  4. [4]
    Chikkali, S. H.; Vlugt, J. I.; Reek, J. N. H. Hybrid diphosphorus ligands in rhodium catalysed asymmetric hydroformylation. Coord. Chem. Rev. 2014, 262, 1–15.CrossRefGoogle Scholar
  5. [5]
    Ungváry, F. Application of transition metals in hydroformylation annual survey covering the year 2006. Coord. Chem. Rev. 2007, 251, 2087–2102.CrossRefGoogle Scholar
  6. [6]
    Fernández, P. H.; Benet, B. J.; Vidal, F. A. Small bite-angle P-OP ligands for asymmetric hydroformylation and hydrogenation. Org. Lett. 2013, 15, 3634–3637.CrossRefGoogle Scholar
  7. [7]
    Selent, D.; Franke, R.; Kubis, C.; Spannenberg, A.; Baumann, W.; Kreidler, B.; Börner, A. A new diphosphite promoting highly regioselective rhodium-catalyzed hydroformylation. Organometallics 2011, 30, 4509–4514.CrossRefGoogle Scholar
  8. [8]
    Doro, F.; Reek, J. N. H.; Leeuwen, P. W. N. M. Isostructural phosphine-phosphite ligands in rhodium-catalyzed asymmetric hydroformylation. Organometallics 2010, 29, 4440–4447.CrossRefGoogle Scholar
  9. [9]
    Worthy, A. D.; Joe, C. L.; Lightburn, T. E.; Tan, K. L. Application of a chiral scaffolding ligand in catalytic enantioselective hydroformylation. J. Am. Chem. Soc. 2010, 132, 14757–14759.CrossRefGoogle Scholar
  10. [10]
    Chikkali, S. H.; Bellini, R.; Bruin, B.; Vlugt, J. I.; Reek, J. N. H. Highly selective asymmetric Rh-catalyzed hydroformylation of heterocyclic olefins. J. Am. Chem. Soc. 2012, 134, 6607–6616.CrossRefGoogle Scholar
  11. [11]
    Wang, X.; Buchwald, S. L. Rh-catalyzed asymmetric hydroformylation of functionalized 1,1-disubstituted olefins. J. Am. Chem. Soc. 2011, 133, 19080–19083.CrossRefGoogle Scholar
  12. [12]
    Lightburn, T. E.; Paolis, O. A. D.; Cheng, K. H.; Tan, K. L. Regioselective hydroformylation of allylic alcohols. Org. Lett. 2011, 13, 2686–2689.CrossRefGoogle Scholar
  13. [13]
    Chen, C.; Qiao, Y.; Geng, H.; Zhang, X. A novel triphosphoramidite ligand for highly regioselective linear hydroformylation of terminal and internal olefins. Org. Lett. 2013, 15, 1048–1051.CrossRefGoogle Scholar
  14. [14]
    Dabbawala, A. A.; Bajaj, H. C.; Jasra, R. V. Rhodium complex of monodentate phosphite as a catalyst for olefins hydroformylation. J. Mol. Catal. A: Chem. 2009, 302, 97–106.CrossRefGoogle Scholar
  15. [15]
    Yoneda, N.; Nakagawa, Y.; Mimami, T. Hydroformylation catalyzed by immobilized rhodium complex to polymer support. Catal. Today 1997, 36, 357–364.CrossRefGoogle Scholar
  16. [16]
    Huang, L.; He, Y.; Kawi, S. Catalytic studies of aminated MCM-41-tethered rhodium complexes for hydroformylation of 1-octene and styrene. J. Mol. Catal. A: Chem. 2004, 213, 241–249.CrossRefGoogle Scholar
  17. [17]
    Riisager, A.; Wasserscheid, P.; Hal, R.; Fehrmann, R. Continuous fixed-bed gas-phase hydroformylation using supported ionic liquid-phase (SILP) Rh catalysts. J. Catal. 2003, 219, 452–455.CrossRefGoogle Scholar
  18. [18]
    Zhang, Y.; Nagasaka, K.; Qiu, X.; Tsubaki, N. Low-pressure hydroformylation of 1-hexene over active carbon-supported noble metal catalysts. Appl. Catal. A: Gen. 2004, 276, 103–111.CrossRefGoogle Scholar
  19. [19]
    Zhou, W.; He, D. A facile method for promoting activities of ordered mesoporous silica-anchored Rh-P complex catalysts in 1-octene hydroformylation. Green Chem. 2009, 11, 1146–1154.CrossRefGoogle Scholar
  20. [20]
    Zhou, W.; He, D. Lengthening alkyl spacers to increase SBA-15-anchored Rh-P complex activities in 1-octene hydroformylation. Chem. Commun. 2008, 5839–5841.Google Scholar
  21. [21]
    Sharma, S. K.; Parikh, P. A.; Jasra, R. V. Hydroformylation of alkenes using heterogeneous catalyst prepared by intercalation of HRh(CO)(TPPTS)3 complex in hydrotalcite. J. Mol. Catal. A: Chem. 2010, 316, 153–162.CrossRefGoogle Scholar
  22. [22]
    Liu, N. A.; Yao, Y.; Cha, J. J.; McDowell, M. T.; Han, Y.; Cui, Y. Functionalization of silicon nanowire surfaces with metal-organic frameworks. Nano Res. 2012, 5, 109–116.CrossRefGoogle Scholar
  23. [23]
    Paz, F. A. A.; Klinowski, J.; Vilela, S. M. F.; Tomé, J. P. C.; Cavaleiro, J. A. S.; Rocha, J. Ligand design for functional metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 1088–1110.CrossRefGoogle Scholar
  24. [24]
    Cohen, S. M. Postsynthetic methods for the functionalization of metal-organic frameworks. Chem. Rev. 2012, 112, 970–1000.CrossRefGoogle Scholar
  25. [25]
    O’Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675–702.CrossRefGoogle Scholar
  26. [26]
    Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734–777.CrossRefGoogle Scholar
  27. [27]
    El-Shall, M. S.; Abdelsayed, V.; Khder, A. S.; Hassan, H. A.; El-Kaderi, H. M.; Reich, T. E. Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101. J. Mater. Chem. 2009, 19, 7625–7631.CrossRefGoogle Scholar
  28. [28]
    Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J. Am. Chem. Soc. 2011, 133, 1304–1306.CrossRefGoogle Scholar
  29. [29]
    Yuan, B. Z.; Pan, Y. Y.; Li, Y. W.; Yin, B. L.; Jiang, H. F. A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. Angew. Chem. Int. Ed. 2010, 49, 4054–4508.CrossRefGoogle Scholar
  30. [30]
    Schröder, F.; Esken, D.; Cokoja, M.; van den Berg, M. W. E.; Lebedev, O. I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach, H. H.; Chaudret, B.; Fischer, R. A. Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: A solid-state reference system for surfactant-stabilized ruthenium colloids. J. Am. Chem. Soc. 2008, 130, 6119–6130.CrossRefGoogle Scholar
  31. [31]
    Dhakshinamoorthy, A.; Garcia, H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 5262–5284.CrossRefGoogle Scholar
  32. [32]
    Moon, H. R.; Lim, D. W.; Suh, M. P. Fabrication of metal nanoparticles in metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 1807–1824.CrossRefGoogle Scholar
  33. [33]
    Zhu, Q. L.; Li, J.; Xu, Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J. Am. Chem. Soc. 2013, 135, 10210–10213.CrossRefGoogle Scholar
  34. [34]
    Zahmakiran, M. Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ZIF-8): Synthesis, structural properties and catalytic performance. Dalton. Trans. 2012, 41, 12690–12696.CrossRefGoogle Scholar
  35. [35]
    Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 2006, 45, 1557–1559.CrossRefGoogle Scholar
  36. [36]
    Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.CrossRefGoogle Scholar
  37. [37]
    Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 2009, 131, 11302–1303.CrossRefGoogle Scholar
  38. [38]
    Wang, P.; Zhao, J.; Li, X.; Yang, Y.; Yang, Q.; Li, C. Assembly of ZIF nanostructures around free Pt nanoparticles: Efficient size-selective catalysts for hydrogenation of alkenes under mild conditions. Chem. Commun. 2013, 49, 3330–3332.CrossRefGoogle Scholar
  39. [39]
    Li, P. Z.; Aranishi, K.; Xu, Q. ZIF-8 immobilized nickel nanoparticles: Highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chem. Commun. 2012, 48, 3173–3175.CrossRefGoogle Scholar
  40. [40]
    Hermannsdörfer, J.; Kempe, R. Selective palladium-loaded MIL-101 catalysts. Chem. Eur. J. 2011, 17, 8071–8077.CrossRefGoogle Scholar
  41. [41]
    Bruss, A. J.; Gelesky, M. A.; Machado, G.; Dupont, J. Rh(0) nanoparticles as catalyst precursors for the solventless hydroformylation of olefins. J. Mol. Catal. A: Chem. 2006, 252, 212–218.CrossRefGoogle Scholar
  42. [42]
    Vu, T. V.; Kosslick, H.; Schulz, A.; Harloff, J.; Paetzold, E.; Schneider, M.; Radnik, J.; Steinfeldt, N.; Fulda, G.; Kragl, U. Selective hydroformylation of olefins over the rhodium supported large porous metal-organic framework MIL-101. Appl. Catal. A: Gen. 2013, 468, 410–417.CrossRefGoogle Scholar
  43. [43]
    Vu, T. V.; Kosslick, H.; Schulz, A.; Harloff, J.; Paetzold, E.; Schneider, M.; Radnik, J.; Kragl, U.; Fulda, G.; Janiak, C.; Tuyen, N. D. Hydroformylation of olefins over rhodium supported metal-organic framework catalysts of different structure. Micropor. Mesopor. Mater. 2013, 177, 135–142.CrossRefGoogle Scholar
  44. [44]
    Zeng, Y.; Wang, Y.; Jiang, J.; Jin, Z. Rh nanoparticle catalyzed hydrogenation of olefins in thermoregulated ionic liquid and organic biphase system. Catal. Commun. 2012, 19, 70–73.CrossRefGoogle Scholar
  45. [45]
    Sun, Z.; Wang, Y.; Niu, M.; Yi, H.; Jiang, J.; Jin, Z. Poly(ethylene glycol)-stabilized Rh nanoparticles as efficient and recyclable catalysts for hydroformylation of olefins. Catal. Commun. 2012, 27, 78–82.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chao Hou
    • 1
  • Guofeng Zhao
    • 1
  • Yongjun Ji
    • 1
  • Zhiqiang Niu
    • 1
  • Dingsheng Wang
    • 1
  • Yadong Li
    • 1
    Email author
  1. 1.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations