Nano Research

, Volume 7, Issue 9, pp 1243–1253 | Cite as

Te-seeded growth of few-quintuple layer Bi2Te3 nanoplates

  • Yanyuan Zhao
  • Maria de la Mata
  • Richard L. J. Qiu
  • Jun Zhang
  • Xinglin Wen
  • Cesar Magen
  • Xuan P. A. Gao
  • Jordi ArbiolEmail author
  • Qihua XiongEmail author
Research Article


We report on a Te-seeded epitaxial growth of ultrathin Bi2Te3 nanoplates (down to three quintuple layers (QL)) with large planar sizes (up to tens of micrometers) through vapor transport. Optical contrast has been systematically investigated for the as-grown Bi2Te3 nanoplates on the SiO2/Si substrates, experimentally and computationally. The high and distinct optical contrast provides a fast and convenient method for the thickness determination of few-QL Bi2Te3 nanoplates. By aberration-corrected scanning transmission electron microscopy, a hexagonal crystalline structure has been identified for the Te seeds, which form naturally during the growth process and initiate an epitaxial growth of the rhombohedralstructured Bi2Te3 nanoplates. The epitaxial relationship between Te and Bi2Te3 is identified to be perfect along both in-plane and out-of-plane directions of the layered nanoplate. Similar growth mechanism might be expected for other bismuth chalcogenide layered materials.


Te nucleation seed epitaxial growth Bi2Te3 few-quintuple layer TEM cross-section optical contrast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_487_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 1.02 MB.


  1. [1]
    Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.; et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.CrossRefGoogle Scholar
  2. [2]
    Koski, K. J.; Cui, Y. The new skinny in two-dimensional nanomaterials. ACS Nano 2013, 7, 3739–3743.CrossRefGoogle Scholar
  3. [3]
    Feng, J.; Sun, X.; Wu, C. Z.; Peng, L. L.; Lin, C. W.; Hu, S. L.; Yang, J. L.; Xie, Y. Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832–17838.CrossRefGoogle Scholar
  4. [4]
    Nolas, G. S.; Sharp, J.; Goldsmid, H. J. Thermoelectrics: Basic Principles and New Materials Developments; Springer: New York, 2001.CrossRefGoogle Scholar
  5. [5]
    Zhang, H. J.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.CrossRefGoogle Scholar
  6. [6]
    Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398–402.CrossRefGoogle Scholar
  7. [7]
    Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045.CrossRefGoogle Scholar
  8. [8]
    Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.CrossRefGoogle Scholar
  9. [9]
    Moore, J. Topological insulators: The next generation. Nat. Phys. 2009, 5, 378–380.CrossRefGoogle Scholar
  10. [10]
    Zhang, Y.; He, K.; Chang, C.-Z.; Song, C.-L.; Wang, L.-L.; Chen, X.; Jia, J.-F.; Fang, Z.; Dai, X.; Shan, W.-Y. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.CrossRefGoogle Scholar
  11. [11]
    Liu, Y.; Bian, G.; Miller, T.; Bissen, M.; Chiang, T. C. Topological limit of ultrathin quasi-free-standing Bi2Te3 films grown on Si(111). Phys. Rev. B 2012, 85, 195442.CrossRefGoogle Scholar
  12. [12]
    Peng, H. L.; Lai, K. J.; Kong, D. S.; Meister, S.; Chen, Y. L.; Qi, X.-L.; Zhang, S.-C.; Shen, Z.-X.; Cui, Y. Aharonov-Bohm interference in topological insulator nanoribbons. Nat. Mater. 2010, 9, 225–229.Google Scholar
  13. [13]
    Xiu, F. X.; He, L.; Wang, Y.; Cheng, L.; Chang, L.-T.; Lang, M.; Huang, G.; Kou, X. F.; Zhou, Y.; Jiang, X. W.; et al. Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 2011, 6, 216–221.CrossRefGoogle Scholar
  14. [14]
    Kong, D. S.; Chen, Y. L.; Cha, J. J.; Zhang, Q. F.; Analytis, J. G.; Lai, K. J.; Liu, Z. K.; Hong, S. S.; Koski, K. J.; Mo, S.-K.; et al. Ambipolar field effect in the ternary topological insulator (BixSb1−x)2Te3 by composition tuning. Nat. Nanotechnol. 2011, 6, 705–709.CrossRefGoogle Scholar
  15. [15]
    Yuan, H. T.; Liu, H. W.; Shimotani, H.; Guo, H.; Chen, M. W.; Xue, Q. K.; Iwasa, Y. Liquid-gated ambipolar transport in ultrathin films of a topological insulator Bi2Te3. Nano Lett. 2011, 11, 2601–2605.CrossRefGoogle Scholar
  16. [16]
    Wang, Z. H.; Qiu, R. L. J.; Lee, C. H.; Zhang, Z.; Gao, X. P. A. Ambipolar surface conduction in ternary topological insulator Bi2(Te1−xSex)3 nanoribbons. ACS Nano 2013, 7, 2126–2131.CrossRefGoogle Scholar
  17. [17]
    Min, Y.; Roh, J. W.; Yang, H.; Park, M.; Kim, S. I.; Hwang, S.; Lee, S. M.; Lee, K. H.; Jeong, U. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv. Mater. 2013, 25, 1425–1429.CrossRefGoogle Scholar
  18. [18]
    Soni, A.; Yanyuan, Z.; Ligen, Y.; Aik, M. K. K.; Dresselhaus, M. S.; Xiong, Q. H. Enhanced thermoelectric properties of solution grown Bi2Te3−xSex nanoplatelet composites. Nano Lett. 2012, 12, 1203–1209.CrossRefGoogle Scholar
  19. [19]
    Son, J. S.; Choi, M. K.; Han, M.-K.; Park, K.; Kim, J.-Y.; Lim, S. J.; Oh, M.; Kuk, Y.; Park, C.; Kim, S.-J.; et al. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 2012, 12, 640–647.CrossRefGoogle Scholar
  20. [20]
    Soni, A.; Shen, Y.; Yin, M.; Zhao, Y.; Yu, L.; Hu, X.; Dong, Z. L.; Khor, K. A.; Dresselhaus, M. S.; Xiong, Q. H. Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites. Nano Lett. 2012, 12, 4305–4310.CrossRefGoogle Scholar
  21. [21]
    Scheele, M.; Oeschler, N.; Veremchuk, I.; Reinsberg, K.-G.; Kreuziger, A.-M.; Kornowski, A.; Broekaert, J.; Klinke, C.; Weller, H. ZT enhancement in solution-grown Sb(2−x)BixTe3 nanoplatelets. ACS Nano 2010, 4, 4283–4291.CrossRefGoogle Scholar
  22. [22]
    Wagner, V.; Dolling, G.; Powell, B. M.; Landweher, G. Lattice vibrations of Bi2Te3. Phys. Stat. Solidi B 1978, 85, 311–317.CrossRefGoogle Scholar
  23. [23]
    Hong, S. S.; Kundhikanjana, W.; Cha, J. J.; Lai, K.; Kong, D.; Meister, S.; Kelly, M. A.; Shen, Z.-X.; Cui, Y. Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. Nano Lett. 2010, 10, 3118–3122.CrossRefGoogle Scholar
  24. [24]
    Teweldebrhan, D.; Goyal, V.; Balandin, A. A. Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. Nano Lett. 2010, 10, 1209–1218.CrossRefGoogle Scholar
  25. [25]
    Cheng, P.; Song, C. L.; Zhang, T.; Zhang, Y. Y.; Wang, Y. L.; Jia, J.-F.; Wang, J.; Wang, Y. Y.; Zhu, B.-F.; Chen, X.; et al. Landau quantization of topological surface states in Bi2Se3. Phys. Rev. Lett. 2010, 105, 076801.CrossRefGoogle Scholar
  26. [26]
    Kong, D. S.; Dang, W. H.; Cha, J. J.; Li, H.; Meister, S.; Peng, H. L.; Liu, Z. F.; Cui, Y. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 2010, 10, 2245–2250.CrossRefGoogle Scholar
  27. [27]
    Dang, W. H.; Peng, H. L.; Li, H.; Wang, P.; Liu, Z. F. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 2010, 10, 2870–2876.CrossRefGoogle Scholar
  28. [28]
    Li, H.; Cao, J.; Zheng, W. S.; Chen, Y. L.; Wu, D.; Dang, W. H.; Wang, K.; Peng, H. L.; Liu, Z. F. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 2012, 134, 6132–6135.CrossRefGoogle Scholar
  29. [29]
    Lee, C. H.; He, R.; Wang, Z. H.; Qiu, R. L. J.; Kumar, A.; Delaney, C.; Beck, B.; Kidd, T. E.; Chancey, C. C.; Sankaran, R. M.; et al. Metal-insulator transition in variably doped (Bi1−xSbx)2Se3 nanosheets. Nanoscale 2013, 5, 4337–4343.CrossRefGoogle Scholar
  30. [30]
    Min, Y.; Moon, G. D.; Kim, B. S.; Lim, B.; Kim, J.-S.; Kang, C. Y.; Jeong, U. Quick, controlled synthesis of ultrathin Bi2Se3 nanodiscs and nanosheets. J. Am. Chem. Soc. 2012, 134, 2872–2875.CrossRefGoogle Scholar
  31. [31]
    Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z.-X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281–286.CrossRefGoogle Scholar
  32. [32]
    Yan, Y.; Liao, Z.-M.; Zhou, Y.-B.; Wu, H.-C.; Bie, Y.-Q.; Chen, J.-J.; Meng, J.; Wu, X.-S.; Yu, D.-P. Synthesis and quantum transport properties of Bi2Se3 topological insulator nanostructures. Sci. Rep. 2013, 3, 1264.Google Scholar
  33. [33]
    Blake, P.; Hill, E. W.; Neto, A. H. C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.CrossRefGoogle Scholar
  34. [34]
    Zhao, Y. Y.; Chua, K. T. E.; Gan, C. K.; Zhang, J.; Peng, B.; Peng, Z. P.; Xiong, Q. H. Phonons in Bi2S3 nanostructures: Raman scattering and first-principles studies. Phys. Rev. B 2011, 84, 205330.CrossRefGoogle Scholar
  35. [35]
    Utama, M. I. B.; Peng, Z. P.; Chen, R.; Peng, B.; Xu, X. L.; Dong, Y.; Wong, L. M.; Wang, S. J.; Sun, H. D.; Xiong, Q. H. Vertically aligned cadmium chalcogenide nanowire arrays on muscovite mica: A demonstration of epitaxial growth strategy. Nano Lett. 2010, 11, 3051–3057.CrossRefGoogle Scholar
  36. [36]
    Zhang, J.; Peng, Z. P.; Soni, A.; Zhao, Y. Y.; Xiong, Y.; Peng, B.; Wang, J. B.; Dresselhaus, M. S.; Xiong, Q. H. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 2011, 11, 2407–2414.CrossRefGoogle Scholar
  37. [37]
    Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S.; et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013, 13, 1007–1015.CrossRefGoogle Scholar
  38. [38]
    Li, Z. G.; Qin, Y. Y.; Mu, Y. W.; Chen, T. S.; Xu, C. H.; He, L. B.; Ding, W. F.; Wan, J. G.; Song, F. Q.; Han, M. et al. Visualizing topological insulating Bi2Te3 quintuple layers on SiO2-capped Si substrates and its contrast optimization. J. Nanosci. Nanotechnol. 2011, 11, 7042–7046.CrossRefGoogle Scholar
  39. [39]
    Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 2007, 7, 3569–3575.CrossRefGoogle Scholar
  40. [40]
    Palik, E. D. Handbook of Optical Constants of Solids; Elsevier Science & Tech, 1985.Google Scholar
  41. [41]
    Greenaway, D. L.; Harbeke, G. Band structure of bismuth telluride, bismuth selenide and their respective alloys. J. Phys. Chem. Solids 1965, 26, 1585–1604.CrossRefGoogle Scholar
  42. [42]
    Aspnes, D. E.; Studna, A. A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 1983, 27, 985–1009.CrossRefGoogle Scholar
  43. [43]
    Cheng, L. N.; Chen, Z.-G.; Yang, L.; Han, G.; Xu, H.-Y.; Snyder, G. J.; Lu, G.-Q.; Zou, J. T-shaped Bi2Te3-Te heteronanojunctions: Epitaxial growth, structural modeling, and thermoelectric properties. J. Phys. Chem. C 2013, 117, 12458–12464.CrossRefGoogle Scholar
  44. [44]
    Mineralogy Database ( [Online].
  45. [45]
    Wang, W. S.; Goebl, J.; He, L.; Aloni, S.; Hu, Y. X.; Zhen, L.; Yin, Y. D. Epitaxial growth of shape-controlled Bi2Te3-Te heterogeneous nanostructures. J. Am. Chem. Soc. 2010, 132, 17316–17324.CrossRefGoogle Scholar
  46. [46]
    Boncheva-Mladenova, Z.; Pashinkin, A. S.; Novoselova, A. V. Determination of the saturated vapor pressure of solid bismuth telluride. Inorg. Mater. Engl. Transl. 1968, 4, 241.Google Scholar
  47. [47]
    Gorbov, S. I.; Krestovnikov, A. N. Thermodynamic properties of the gaseous chalcogenides of group V elements. Russ. J. Phys. Chem. 1966, 40, 505–507.Google Scholar
  48. [48]
    Kashkooli, I. Y.; Munir, Z. A. The equilibrium and free surface sublimation pressures of oriented single crystals of bismuth telluride. J. Electrochem. Soc. 1970, 117, 248–250.CrossRefGoogle Scholar
  49. [49]
    Brebrick, R.; Smith, F. Partial and total vapor pressures over molten Bi2Te3. J. Electrochem. Soc. 1971, 118, 991–996.CrossRefGoogle Scholar
  50. [50]
    Elliott, R. P. Constitution of Binary Alloys, First Supplement; McGraw-Hill Company: New York, 1965.Google Scholar
  51. [51]
    Grillo, V.; Rossi, F. STEM_CELL: A software tool for electron microscopy. Part 2 analysis of crystalline materials. Ultramicroscopy 2013, 125, 112–129.CrossRefGoogle Scholar
  52. [52]
    Levi, A. C.; Kotrla, M. Theory and simulation of crystal growth. J. Phys.: Condens. Matt. 1997, 9, 299.Google Scholar
  53. [53]
    Medlin, D.; Ramasse, Q.; Spataru, C.; Yang, N. Structure of the (0001) basal twin boundary in Bi2Te3. J. Appl. Phys. 2010, 108, 043517.CrossRefGoogle Scholar
  54. [54]
    Medlin, D. L.; Yang, N. Y. C. Interfacial step structure at a (0001) basal twin in Bi2Te3. J. Electron. Mater. 2012, 41, 1456–1464.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yanyuan Zhao
    • 1
  • Maria de la Mata
    • 2
  • Richard L. J. Qiu
    • 3
  • Jun Zhang
    • 1
  • Xinglin Wen
    • 1
  • Cesar Magen
    • 4
  • Xuan P. A. Gao
    • 3
  • Jordi Arbiol
    • 2
    • 5
    Email author
  • Qihua Xiong
    • 1
    • 6
    Email author
  1. 1.Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  2. 2.Institut de Ciència de Materials de BarcelonaICMAB-CSICBellaterra, CATSpain
  3. 3.Department of PhysicsCase Western Reserve UniversityClevelandUSA
  4. 4.Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA) — ARAID and Departamento de Fisica de la Materia CondensadaUniversidad de ZaragozaZaragozaSpain
  5. 5.Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, CATSpain
  6. 6.NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations