Nano Research

, Volume 7, Issue 8, pp 1224–1231 | Cite as

Characterization of the thermal conductivity of La0.95Sr0.05CoO3 thermoelectric oxide nanofibers

  • Weihe Xu
  • Evgeny Nazaretski
  • Ming Lu
  • Hamid Hadim
  • Yong ShiEmail author
Research Article


Thermoelectric oxide nanofibers prepared by electrospinning are expected to have reduced thermal conductivity when compared to bulk samples. Measurements of nanofibers’ thermal conductivity is challenging since it involves sophisticated sample preparation methods. In this work, we present a novel method suitable for measurements of thermal conductivity of a single nanofiber. A microelectro-mechanical (MEMS) device has been designed and fabricated to perform thermal conductivity measurements on a single nanofiber. A special Si template was designed to collect and transfer individual nanofibers onto a MEMS device. Pt was deposited by a focused ion beam to reduce the effective length of a prepared nanofiber. La0.95Sr0.05CoO3 nanofibers with diameters of 140 nm and 290 nm were studied and characterized using this approach at room temperature. Measured thermal conductivities yielded values of 0.7 W·m−1·K−1 and 2.1 W·m−1·K−1, respectively. Our measurements in La0.95Sr0.05CoO3 nanofibers confirmed that a decrease of linear dimensions has a profound effect on its thermal conductivity.


heat transfer thermal conductivity nanoscale MEMS thermoelectric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_485_MOESM1_ESM.pdf (582 kb)
Supplementary material, approximately 582 KB.


  1. [1]
    Chen, G.; Shakouri, A. Heat transfer in nanostructures for solid-state energy conversion. J. Heat Transfer 2002, 124, 242–252.CrossRefGoogle Scholar
  2. [2]
    Cao, Y. Q.; Zhu, T. J.; Zhao, X. B. Thermoelectric Bi2Te3 nanotubes synthesized by low-temperature aqueous chemical method. J. Alloys Compd. 2008, 449, 109–112.CrossRefGoogle Scholar
  3. [3]
    Takashiri, M.; Borca-Tasciuc, T.; Jacquot, A.; Miyazaki, K.; Chen, G. Structure and thermoelectric properties of boron doped nanocrystalline Si0.8Ge0.2 thin film. Appl. Phys. Lett. 2006, 100, 054315.Google Scholar
  4. [4]
    da Silva, L. W.; Kaviany, M. Fabrication and measured performance of a first-generation microthermoelectric cooler. J. Microelectromech. Syst. 2005, 14, 1110–1117.CrossRefGoogle Scholar
  5. [5]
    Snyder, G. J.; Lim, J. R.; Huang, C.-K; Fleurial, J.-P. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2003, 2, 528–531.CrossRefGoogle Scholar
  6. [6]
    Wang, W.; Jia, F. L.; Huang, Q. H.; Zhang, J. Z. A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectron. Eng. 2005, 77, 223–229.CrossRefGoogle Scholar
  7. [7]
    Bottner, H. Micropelt Miniaturized Thermoelectric Devices: Small Size, High Cooling Power Densities, Short Response Time. 24th International Conference on Thermoelectrics 2005, 1–8.Google Scholar
  8. [8]
    Rowe, D. M. Thermoelectrics Handbook: Macro to Nano; CRC Press, 2005; Chapter. 1.CrossRefGoogle Scholar
  9. [9]
    Vineis, C. J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M. G. Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater., 2010, 22, 3970–3980.CrossRefGoogle Scholar
  10. [10]
    Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J. P.; Gogna, P. New direction for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053.CrossRefGoogle Scholar
  11. [11]
    Hicks, L. D.; Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 1993, 47, 16631.CrossRefGoogle Scholar
  12. [12]
    Tian, Y.; Sakr, M. R.; Kinder, J. M.; Liang, D.; MacDonald, M. J.; Qiu, R. L. J.; Gao, H.-J.; Gao, X. P. A. One-dimensional quantum confinement effect modulated thermoelectric properties in InAs nanowires. Nano Lett. 2012, 12, 6492–6497.CrossRefGoogle Scholar
  13. [13]
    Zhou, J. H.; Jin, C. G.; Seol, J. H.; Li, X. G.; Shi, L. Thermoelectric properties of individual electrodeposited bismuth telluride nanowires. Appl. Phys. Lett. 2005, 87, 133109.CrossRefGoogle Scholar
  14. [14]
    Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602.CrossRefGoogle Scholar
  15. [15]
    Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E.; Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297, 2229–2232.CrossRefGoogle Scholar
  16. [16]
    Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. Goddard III, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168–171.CrossRefGoogle Scholar
  17. [17]
    Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett C., Najarian. M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.CrossRefGoogle Scholar
  18. [18]
    Li, D. Y.; Wu, Y. Y.; Kim, P.; Shi, L.; Yang, P. D.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936.CrossRefGoogle Scholar
  19. [19]
    Lee, E. K.; Yin, L.; Lee, Y.; Lee, J. W.; Lee, S. J.; Lee, J.; Cha, S. N.; Whang, D.; Hwang, G. S.; Hippalgaonkar, K. et al. Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties. Nano Lett. 2012, 12, 2918–2923.CrossRefGoogle Scholar
  20. [20]
    Borca-Tasciuc, D.-A.; Chen, G.; Prieto, A.; Martín-González, M. S.; Stacy, A.; Sands, T.; Ryan, M. A.; Fleurial, J. P. Thermal properties of electrodeposited bismuth telluride nanowires embedded in amorphous alumina. Appl. Phys. Lett. 2004, 85, 6001.CrossRefGoogle Scholar
  21. [21]
    Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A. M.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638.CrossRefGoogle Scholar
  22. [22]
    Ohtaki, M. Oxide thermoelectric materials for heat-to-electricity direct energy conversion. Novel Carbon Resour. Sci. Newsl. 2009.Google Scholar
  23. [23]
    Tanaka, T.; Nakamura, S.; Iida, S. Observation of distinct metallic conductivity in NaCo2O4. Jpn. J. Appl. Phys. 1994, 33, 581–582.CrossRefGoogle Scholar
  24. [24]
    Rowe, D. M. CRC Handbook of Thermoelectrics; CRC Press LLC, Florida, 1995; Chapter. 35.CrossRefGoogle Scholar
  25. [25]
    Bérardan, D.; Guilmeau, E.; Maignan, A.; Raveau, B. In2O3:Ge, a promising n-type thermoelectric oxide composite. Solid State Commun. 2008, 146, 97–101.CrossRefGoogle Scholar
  26. [26]
    Lan, Y. C.; Minnich, A. J.; Chen, G.; Ren, Z. F. Enhancement of thermoelectric figure-of-merit by a nanostructuring approach. Adv. Funct. Mater. 2010, 20, 357–376.CrossRefGoogle Scholar
  27. [27]
    Henry, A. S.; Chen, G. Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics. J. Comput. Theor. Nanos. 2008, 5, 141–152.Google Scholar
  28. [28]
    Wang, Y. F.; Fujinami, K.; Zhang, R. Z.; Wan, C. L.; Wang, N.; Ba, Y. S.; Koumoto, K. Interfacial thermal resistance and thermal conductivity in nanograined SrTiO3. Appl. Phys. Exp. 2010, 3, 031101.CrossRefGoogle Scholar
  29. [29]
    Ohta, H.; Kim, S.; Mune, Y.; Mizoguchi, T.; Nomura, K.; Ohta, S.; Nomura, T.; Nakanishi, Y.; Ikuhara, Y.; Hirano, M. et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 2007, 6, 129–134.CrossRefGoogle Scholar
  30. [30]
    Shi, Li.; Hao, Q.; Yu. C.; Mingo, N.; Kong, X.; Wang, Z. L. Thermal conductivities of individual tin dioxide nanobelts. Appl. Phys. Lett. 2004, 84, 2638.CrossRefGoogle Scholar
  31. [31]
    Wang, Y.; Fan, H. J. Improved thermoelectric properties of La1−xSrxCoO3 nanowires. J. Phys. Chem. C 2010, 114, 13947–13953.CrossRefGoogle Scholar
  32. [32]
    Park, K.; Lee, G. W. Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process. Nanoscale Res. Lett. 2011, 6, 548.CrossRefGoogle Scholar
  33. [33]
    Fley, B. M.; Brown-Shaklee, H. J.; Duda, J. C.; Cheaito, R.; Gibbons, B. J.; Medlin, D.; Ihlefeld, J. F.; Hopkins, P. E. Thermal conductivity of nano-grained SrTiO3 thin films. Appl. Phys. Lett. 2012, 101, 231908.CrossRefGoogle Scholar
  34. [34]
    Ravichandran, J.; Yadav, A. K.; Siemons, W.; McGuire, M. A.; Wu, V.; Vailionis, A.; Majumdar, A.; Ramesh, R. Size effects on thermoelectricity in a strongly correlated oxide. Phys. Rev. B 2012, 85, 085112.CrossRefGoogle Scholar
  35. [35]
    Dresselhaus, M. S.; Dresselhaus, G.; Sun, X.; Zhang, Z.; Cornin, S. B.; Koga, T.; Ying, J. Y.; Chen, G. The promise of low-dimensional thermoelectric materials. Microsc. Thermophys Eng. 1999, 3, 89–100.CrossRefGoogle Scholar
  36. [36]
    Li, G. D.; Liang, D.; Qiu, R. L. J.; Gao, X. P. A. Thermal conductivity measurement of individual Bi2Se3 nano-ribbon by self-heating three-ω method. Appl. Phys. Lett. 2013, 102, 043104.CrossRefGoogle Scholar
  37. [37]
    Doerk, G. S.; Carraro, C.; Maboudian, R. Single nanowire thermal conductivity measurements by Raman thermography. ACS Nano 2010, 4, 4908–4914.CrossRefGoogle Scholar
  38. [38]
    Soini, M.; Zardo, I.; Uccelli, E.; Funk, S.; Koblmüller, G.; Morral, A. F. i.; Abstreiter, G. Thermal conductivity of GaAs nanowires studied by mirco-Raman spectroscopy combined with laser heating. Appl. Phys. Lett. 2006, 97, 263107.CrossRefGoogle Scholar
  39. [39]
    Choi, T.-Y.; Poulikaos, D.; Tharian, J.; Sennhauser, U. Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method. Nano Lett. 2006, 6, 1589–1593.CrossRefGoogle Scholar
  40. [40]
    Yi, W.; Lu, L.; Zhang, D.-L.; Pan, Z. W.; Xie, S. S. Linear specific heat of carbon nanotube. Phys. Rev. B 1999, 59, 9015–9018.CrossRefGoogle Scholar
  41. [41]
    Xu, W.; Shi, Y.; Hadim, H. The fabrication of thermoelectric La0.95Sr0.05CoO3 nanofiber and Seebeck coefficient measurement. Nanotechnology 2010, 21, 395303.CrossRefGoogle Scholar
  42. [42]
    Xu, W. H.; Li, J. W.; Zhang, G. T.; Chen, X.; Galos, R.; Hadim, H.; Lu, M.; Shi, Y. A low-cost MEMS tester for measuring single nanostructure’s thermal conductivity. Sensor. Actuat. A-Phys. 2013, 191, 1, 89–98.CrossRefGoogle Scholar
  43. [43]
    Androulakis, J.; Migiakis, P.; Giapintzakis, J. La0.95Sr0.05CoO3: An efficient room-temperature thermoelectric oxide. Appl. Phys. Lett. 2004, 84, 1099.CrossRefGoogle Scholar
  44. [44]
    Shi, L.; Li, D. Y.; Yu, C.; Jang, W.; Kim, D.; Yao, Z.; Kim, P.; Majumdar, A. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 2003, 125, 881–888.CrossRefGoogle Scholar
  45. [45]
    Pettes, M.; Jo, I.; Yao, Z.; Shi, L. Influence of polymeric residue on the thermal conductivity of suspended bilyaer graphene. Nano Lett. 2011, 11, 1195–1200.CrossRefGoogle Scholar
  46. [46]
    Stølen, S.; Grønvold, F.; Brink, H.; Atake, T.; Mori, H. Heat capacity and thermodynamic properties of LaFeO3 and LaCoO3 from T = 13 K, to T = 1000 K. J. Chem. Thermodyn. 1998, 30, 365–377.CrossRefGoogle Scholar
  47. [47]
    Ju, Y. S.; Goodson, K. E. Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 1999, 74, 3005.CrossRefGoogle Scholar
  48. [48]
    Regner, K. T.; Sellan, D. P.; Su, Z. H.; Amon, C. H.; McGaughey, A. J. H.; Malen, J. A. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 2013, 4, 1640.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Weihe Xu
    • 1
    • 2
  • Evgeny Nazaretski
    • 1
  • Ming Lu
    • 1
  • Hamid Hadim
    • 2
  • Yong Shi
    • 2
    Email author
  1. 1.Brookhaven National LabUptonUSA
  2. 2.Department of Mechanical EngineeringStevens Institute of TechnologyHobokenUSA

Personalised recommendations