Advertisement

Nano Research

, Volume 7, Issue 8, pp 1215–1223 | Cite as

Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor

  • Limin Zhang
  • Fei Xue
  • Weiming Du
  • Changbao Han
  • Chi Zhang
  • Zhonglin WangEmail author
Research Article

Abstract

The triboelectric nanogenerator (TENG), based on the well-known triboelectric effect and electrostatic induction effect, has been proven to be a simple, cost effective approach for self-powered systems to convert ambient mechanical energy into electricity. We report a flexible and transparent paper-based triboelectric nanogenerator (PTENG) consisting of an indium tin oxide (ITO) film and a polyethylene terephthalate (PET) film as the triboelectric surfaces, which not only acts as an energy supply but also as a self-powered active sensor. It can harvest kinetic energy when the sheets of paper come into contact, bend or slide relative to one another by a combination of vertical contact-separation mode and lateral sliding mode. In addition, we also integrate grating-structured PTENGs into a book as a self-powered anti-theft sensor. The mechanical agitation during handling the book pages can be effectively converted into an electrical output to either drive a commercial electronic device or trigger a warning buzzer. Furthermore, different grating-structures on each page produce different numbers of output peaks by sliding relative to one another, which can accurately act as a page mark and record the number of pages turned. This work is a significant step forward in self-powered paper-based devices.

Keywords

paper-based triboelectric nanogenerator self-powered systems anti-theft sensor position indium tin oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_484_MOESM1_ESM.pdf (446 kb)
Supplementary material, approximately 446 KB.

Supplementary material, approximately 1.33 MB.

Supplementary material, approximately 22.3 MB.

Supplementary material, approximately 4.36 MB.

References

  1. [1]
    Wang, Z. L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567.CrossRefGoogle Scholar
  2. [2]
    Wang, Z. L.; Zhu, G.; Yang, Y.; Wang, S. H.; Pan, C. F. Progress in nanogenerators for portable electronics. Mater. Today 2012, 15, 532–543.CrossRefGoogle Scholar
  3. [3]
    Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.CrossRefGoogle Scholar
  4. [4]
    Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821–826.CrossRefGoogle Scholar
  5. [5]
    Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.CrossRefGoogle Scholar
  6. [6]
    Sekitani, T.; Yokota, T.; Zschieschang, U.; Klauk, H.; Bauer, S.; Takeuchi, K.; Takamiya, M.; Sakurai, T.; Someya, T. Organic nonvolatile memory transistors for flexible sensor arrays. Science 2009, 326, 1516–1519.CrossRefGoogle Scholar
  7. [7]
    Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. P. Natl. Acad. Sci. USA 2004, 101, 9966–9970.CrossRefGoogle Scholar
  8. [8]
    Donelan, J. M.; Li, Q.; Naing, V.; Hoffer, J. A.; Weber, D. J.; Kuo, A. D. Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science 2008, 319, 807–810.CrossRefGoogle Scholar
  9. [9]
    Krupenkin, T.; Taylor, J. A. Reverse electrowetting as a new approach to high-power energy harvesting. Nat. Commun. 2011, 2, 448.CrossRefGoogle Scholar
  10. [10]
    Qi, Y.; Kim, J.; Nguyen, T. D.; Lisko, B.; Purohit, P. K.; McAlpine, M. C. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled pzt ribbons. Nano Lett. 2011, 11, 1331–1336.CrossRefGoogle Scholar
  11. [11]
    Rome, L. C.; Flynn, L.; Goldman, E. M.; Yoo, T. D. Generating electricity while walking with loads. Science 2005, 309, 1725–1728.CrossRefGoogle Scholar
  12. [12]
    Paradiso, J. A.; Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervas. Comput. 2005, 4, 18–27.CrossRefGoogle Scholar
  13. [13]
    Yang, Y.; Zhang, H. L.; Liu, Y.; Lin, Z. H.; Lee, S.; Lin, Z. Y.; Wong, C. P.; Wang, Z. L. Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano 2013, 7, 2808–2813.CrossRefGoogle Scholar
  14. [14]
    Cha, S. N.; Seo, J. S.; Kim, S. M.; Kim, H. J.; Park, Y. J.; Kim, S. W.; Kim, J. M. Sound-driven piezoelectric nanowire-based nanogenerators. Adv. Mater. 2010, 22, 4726–4730.CrossRefGoogle Scholar
  15. [15]
    Hansen, B. J.; Liu, Y.; Yang, R. S.; Wang, Z. L. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 2010, 4, 3647–3652.CrossRefGoogle Scholar
  16. [16]
    Xu, C.; Wang, X. D.; Wang, Z. L. Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J. Am. Chem. Soc. 2009, 131, 5866–5872.CrossRefGoogle Scholar
  17. [17]
    Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.CrossRefGoogle Scholar
  18. [18]
    Mitcheson, P. D.; Miao, P.; Stark, B. H.; Yeatman, E. M.; Holmes, A. S.; Green, T. C. Mems electrostatic micropower generator for low frequency operation. Sensor. Actuat. A-Phys. 2004, 115, 523–529.CrossRefGoogle Scholar
  19. [19]
    Naruse, Y.; Matsubara, N.; Mabuchi, K.; Izumi, M.; Suzuki, S. Electrostatic micro power generation from low-frequency vibration such as human motion. J. Micromech. Microeng. 2009, 19, 094002.CrossRefGoogle Scholar
  20. [20]
    Beeby, S. P.; Torah, R. N.; Tudor, M. J.; Glynne-Jones, P.; O’Donnell, T.; Saha, C. R.; Roy, S. A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 2007, 17, 1257–1265.CrossRefGoogle Scholar
  21. [21]
    Williams, C. B.; Shearwood, C.; Harradine, M. A.; Mellor, P. H.; Birch, T. S.; Yates, R. B. Development of an electromagnetic micro-generator. IEE Proc. Circ. Dev. Syst. 2001, 148, 337–342.CrossRefGoogle Scholar
  22. [22]
    Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.CrossRefGoogle Scholar
  23. [23]
    Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.CrossRefGoogle Scholar
  24. [24]
    Zhong, Q. Z.; Zhong, J. W.; Hu, B.; Hu, Q. Y.; Zhou, J.; Wang, Z. L. A paper-based nanogenerator as a power source and active sensor. Energ. Environ. Sci. 2013, 6, 1779–1784.CrossRefGoogle Scholar
  25. [25]
    Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.CrossRefGoogle Scholar
  26. [26]
    Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.CrossRefGoogle Scholar
  27. [27]
    Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.CrossRefGoogle Scholar
  28. [28]
    Lin, L.; Wang, S. H.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Hu, Y. F.; Wang, Z. L. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 2013, 13, 2916–2923.CrossRefGoogle Scholar
  29. [29]
    Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.CrossRefGoogle Scholar
  30. [30]
    Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.CrossRefGoogle Scholar
  31. [31]
    Zhang, C.; Zhou, T.; Tang, W.; Han, C. B.; Zhang, L. M.; Wang, Z. L. Rotating disk based direct-current triboelectric nanogenerator. Adv. Energy Mater., in press, DOI: 10.1002/aenm.201301798.Google Scholar
  32. [32]
    Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Limin Zhang
    • 1
  • Fei Xue
    • 1
  • Weiming Du
    • 1
  • Changbao Han
    • 1
  • Chi Zhang
    • 1
  • Zhonglin Wang
    • 1
    • 2
    Email author
  1. 1.Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
  2. 2.School of Material Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations