Advertisement

Nano Research

, Volume 7, Issue 8, pp 1205–1214 | Cite as

Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction

  • Gengtao Fu
  • Zhenyuan Liu
  • Yu ChenEmail author
  • Jun Lin
  • Yawen TangEmail author
  • Tianhong Lu
Research Article

Abstract

Bimetallic core-shell nanostructures with porous surfaces have drawn considerable attention due to their promising applications in various fields, including catalysis and electronics. In this work, Au@Pd core-shell nanothorns (CSNTs) with rough and porous surfaces were synthesized for the first time through a facile co-chemical reduction method in the presence of polyallylamine hydrochloride (PAH) and ethylene glycol (EG) at room temperature. The size, morphology, and composition of Au@Pd CSNTs were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDX), EDX mapping, and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of as-synthesized Au@Pd CSNTs were also studied by various electrochemical techniques. Au@Pd CSNTs exhibited remarkably high electrocatalytic activity and durability for the oxygen reduction reaction (ORR) in the alkaline media, owing to the unique porous structure and the synergistic effect between the Au core and Pd shell.

Keywords

gold palladium porous surface core-shell structure oxygen reduction reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_483_MOESM1_ESM.pdf (1.5 mb)
Supplementary material, approximately 1.49 MB.

References

  1. [1]
    Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.CrossRefGoogle Scholar
  2. [2]
    Peng, Z. M.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J. Am. Chem. Soc. 2009, 131, 7542–7543.CrossRefGoogle Scholar
  3. [3]
    Peng, Z. M.; Yang, H. PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res. 2009, 2, 406–415.CrossRefGoogle Scholar
  4. [4]
    Hong, J. W.; Kim, M.; Kim, Y.; Han, S. W. Trisoctahedral Au-Pd alloy nanocrystals with high-index facets and their excellent catalytic performance. Chem. Eur. J. 2012, 18, 16626–16630.CrossRefGoogle Scholar
  5. [5]
    Lee, Y. W.; Kim, M.; Kim, Y.; Kang, S. W.; Lee, J.-H.; Han, S. W. Synthesis and electrocatalytic activity of Au-Pd alloy nanodendrites for ethanol oxidation. J. Phys. Chem. C 2010, 114, 7689–7693.CrossRefGoogle Scholar
  6. [6]
    Lim, B.; Jiang, M. J.; Yu, T.; Camargo, P. H. C.; Xia, Y. N. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 2010, 3, 69–80.CrossRefGoogle Scholar
  7. [7]
    Zhang, L.; Zhang, J. W.; Kuang, Q.; Xie, S. F.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Cu2+-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 2011, 133, 17114–17117.CrossRefGoogle Scholar
  8. [8]
    Wang, W. J.; Zhang, J.; Yang, S. C.; Ding, B. J.; Song, X. P. Au@Pd core-shell nanobricks with concave structures and their catalysis of ethanol oxidation. ChemSusChem 2013, 6, 1945–1951.CrossRefGoogle Scholar
  9. [9]
    Balcha, T.; Strobl, J. R.; Fowler, C.; Dash, P.; Scott, R. W. J. Selective aerobic oxidation of crotyl alcohol using AuPd core-shell nanoparticles. ACS Catal. 2011, 1, 425–436.CrossRefGoogle Scholar
  10. [10]
    Lim, B.; Jiang, M. J.; Yu, T.; Camargo, P. H. C.; Xia, Y. N. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 2010, 3, 69–80.CrossRefGoogle Scholar
  11. [11]
    Li, W. Z.; Kuai, L.; Qin, Q.; Geng, B. Ag-Au bimetallic nanostructures: Co-reduction synthesis and their component-dependent performance for enzyme-free H2O2 sensing. J. Mater. Chem. A 2013, 1, 7111–7117.CrossRefGoogle Scholar
  12. [12]
    Chen, L.; Kuai, L.; Yu, X.; Li, W.; Geng, B. Advanced catalytic performance of Au-Pt double-walled nanotubes and their fabrication through galvanic replacement reaction. Chem. Eur. J. 2013, 19, 11753–11758.CrossRefGoogle Scholar
  13. [13]
    Kim, D. Y.; Kang, S. W.; Choi, K. W.; Choi, S. W.; Han, S. W.; Im, S. H.; Park, O. O. Au@Pd nanostructures with tunable morphologies and sizes and their enhanced electrocatalytic activity. CrystEngComm 2013, 15, 7113–7120.CrossRefGoogle Scholar
  14. [14]
    Xu, J. G.; Wilson, A. R.; Rathmell, A. R.; Howe, J.; Chi, M. F.; Wiley, B. J. Synthesis and catalytic properties of Au-Pd nanoflowers. ACS Nano 2011, 5, 6119–6127.CrossRefGoogle Scholar
  15. [15]
    Kim, D. Y.; Choi, K. W.; Zhong, X.-L.; Li, Z.-Y.; Im, S. H.; Park, O. O. Au@Pd core-shell nanocubes with finely-controlled sizes. CrystEngComm 2013, 15, 3385–3391.CrossRefGoogle Scholar
  16. [16]
    Lee, Y. W.; Kim, M.; Kim, Z. H.; Han, S. W. One-step synthesis of Au@Pd core-shell nanooctahedron. J. Am. Chem. Soc. 2009, 131, 17036–17037.CrossRefGoogle Scholar
  17. [17]
    Li, J.; Zheng, Y. Q.; Zeng, J.; Xia, Y. N. Controlling the size and morphology of Au@Pd core-shell nanocrystals by manipulating the kinetics of seeded growth. Chem. Eur. J. 2012, 18, 8150–8156.CrossRefGoogle Scholar
  18. [18]
    Song, H. M.; Anjum, D. H.; Sougrat, R.; Hedhili, M. N.; Khashab, N. M. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions. J. Mater. Chem. 2012, 22, 25003–25010.CrossRefGoogle Scholar
  19. [19]
    Kuai, L.; Geng, B. Y.; Wang, S. Z.; Sang, Y. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances. Chem. Eur. J. 2012, 18, 9423–9429.CrossRefGoogle Scholar
  20. [20]
    Fu, G. T.; Wu, K.; Lin, J.; Tang, Y.; Chen, Y.; Zhou, Y. M.; Lu, T. H. One-pot water-based synthesis of Pt-Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J. Phys. Chem. C 2013, 117, 9826–9834.CrossRefGoogle Scholar
  21. [21]
    Fu, G.; Wu, K.; Jiang, X.; Tao, L.; Chen, Y.; Lin, J.; Zhou, Y.; Wei, S.; Tang, Y.; Lu, T.; et al. Polyallylamine-directed green synthesis of platinum nanocubes. Shape and electronic effect codependent enhanced electrocatalytic activity. Phys. Chem. Chem. Phys. 2013, 15, 3793–3802.CrossRefGoogle Scholar
  22. [22]
    Garsany, Y.; Baturina, O. A.; Swider-Lyons, K. E.; Kocha, S. S. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 2010, 82, 6321–6328.CrossRefGoogle Scholar
  23. [23]
    Awaludin, Z.; Suzuki, M.; Masud, J.; Okajima, T.; Ohsaka, T. Enhanced electrocatalysis of oxygen reduction on Pt/TaOx/GC. J. Phys. Chem. C 2011, 115, 25557–25567.CrossRefGoogle Scholar
  24. [24]
    Stamenković, V.; Schmidt, T. J.; Ross, P. N.; Marković, N. M. Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 2002, 106, 11970–11979.CrossRefGoogle Scholar
  25. [25]
    Takai, A.; Ataee-Esfahani, H.; Doi, Y.; Fuziwara, M.; Yamauchi, Y.; Kuroda, K. Pt nanoworms: Creation of a bumpy surface on one-dimensional (1D) Pt nanowires with the assistance of surfactants embedded in mesochannels. Chem. Commun. 2011, 47, 7701–7703.CrossRefGoogle Scholar
  26. [26]
    Lim, B.; Lu, X.; Jiang, M.; Camargo, P. H.; Cho, E. C.; Lee, E. P.; Xia, Y. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett. 2008, 8, 4043–4047.CrossRefGoogle Scholar
  27. [27]
    Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. N. Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew. Chem. Int. Ed. 2011, 50, 2773–2777.CrossRefGoogle Scholar
  28. [28]
    Zhou, W. J.; Lee, J. Y. Highly active core-shell Au@Pd catalyst for formic acid electrooxidation. Electrochem. Commun. 2007, 9, 1725–1729.CrossRefGoogle Scholar
  29. [29]
    Tan, Q.; Du, C. Y.; Yin, G. P.; Zuo, P. J.; Cheng, X. Q.; Chen, M. Highly efficient and stable nonplatinum anode catalyst with Au@Pd core-shell nanostructures for methanol electrooxidation. J. Catal. 2012, 295, 217–222.CrossRefGoogle Scholar
  30. [30]
    Fu, G. T.; Jiang, X.; Ding, L. F.; Tao, L.; Chen, Y.; Tang, Y. W.; Zhou, Y. M.; Wei, S. H.; Lin, J.; Lu, T. H. Green synthesis and catalytic properties of polyallylamine functionalized tetrahedral palladium nanocrystals. Appl. Catal. B: Environ. 2013, 138–139, 167–174.CrossRefGoogle Scholar
  31. [31]
    Fu, G. T.; Han, W.; Yao, L. F.; Lin, J.; Wei, S. H.; Chen, Y.; Tang, Y. W.; Zhou, Y.; Lu, T. H.; Xia, X. H. One-step synthesis and catalytic properties of porous palladium nanospheres. J. Mater. Chem. 2012, 22, 17604–17611.CrossRefGoogle Scholar
  32. [32]
    Fu, G. T.; Jiang, X.; Tao, L.; Chen, Y.; Lin, J.; Zhou, Y. M.; Tang, Y. W.; Lu, T. H. Polyallylamine functionalized palladium icosahedra: One-pot water-based synthesis and their superior electrocatalytic activity and ethanol tolerant ability in alkaline media. Langmuir 2013, 29, 4413–4420.CrossRefGoogle Scholar
  33. [33]
    Jeong, G. H.; Choi, D.; Kang, M.; Shin, J.; Kang, J. G.; Kim, S. W. One-pot synthesis of Au@ Pd/graphene nanostructures: Electrocatalytic ethanol oxidation for direct alcohol fuel cells (DAFCs). RSC Adv. 2013, 3, 8864–8870.CrossRefGoogle Scholar
  34. [34]
    Zhang, L.-F.; Zhang, C.-Y. Dodecahedral Au@Pd nanocrystals with high-index facets and excellent electrocatalytic activity and highly efficient surface-enhanced Raman scattering enhancement. Nanoscale 2013, 5, 6074–6080.CrossRefGoogle Scholar
  35. [35]
    Lee, Y. W.; Kim, N. H.; Lee, K. Y.; Kwon, K.; Kim, M.; Han, S. W. Synthesis and characterization of flower-shaped porous Au-Pd alloy nanoparticles. J. Phys. Chem. C 2008, 112, 6717–6722.CrossRefGoogle Scholar
  36. [36]
    Li, Z. H.; Li, R.; Mu, T. C.; Luan, Y. X. Ionic liquid assisted synthesis of Au-Pd bimetallic particles with enhanced electrocatalytic activity. Chem. Eur. J. 2013, 19, 6005–6013.CrossRefGoogle Scholar
  37. [37]
    Heo, J.; Kim, D.-S.; Kim, Z. H.; Lee, Y. W.; Kim, D.; Kim, M.; Kwon, K.; Park, H. J.; Yun, W. S.; Han, S. W. Controlled synthesis and characterization of the enhanced local field of octahedral Au nanocrystals. Chem. Commun. 2008, 6120–6122.Google Scholar
  38. [38]
    Tian, Z.-Q.; Ren, B.; Li, J.-F.; Yang, Z.-L. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 2007, 3514–3534.Google Scholar
  39. [39]
    Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.CrossRefGoogle Scholar
  40. [40]
    Zhang, J.; Mo, Y.; Vukmirovic, M.; B. Klie, R.; Sasaki, K.; Adzic, R. R. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd (111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 2004, 108, 10955–10964.CrossRefGoogle Scholar
  41. [41]
    Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun, X. L. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: Multiarmed starlike nanowire single crystal. Angew. Chem. Int. Ed. 2011, 50, 422–426.CrossRefGoogle Scholar
  42. [42]
    Xia, B. Y.; Ng, W. T.; Wu, H. B.; Wang, X.; Lou, X. W. Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. Angew. Chem. Int. Ed. 2012, 51, 7213–7216.CrossRefGoogle Scholar
  43. [43]
    Kuai, L.; Yu, X.; Wang, S. Z.; Sang, Y.; Geng, B. Y. Au-Pd alloy and core-shell nanostructures: One-pot coreduction preparation, formation mechanism, and electrochemical properties. Langmuir 2012, 28, 7168–7173.CrossRefGoogle Scholar
  44. [44]
    Lee, C.-L.; Chao, Y.-J.; Chen, C.-H.; Chiou, H.-P.; Syu, C. C. Graphite-nanofiber-supported porous Pt-Ag nanosponges: Synthesis and oxygen reduction electrocatalysis. Int. J. Hydrogen Energ. 2011, 36, 15045–15051.CrossRefGoogle Scholar
  45. [45]
    Lima, F. H. B.; de Castro, J. F. R.; Ticianelli, E. A. Silver-cobalt bimetallic particles for oxygen reduction in alkaline media. J. Power Sources 2006, 161, 806–812.CrossRefGoogle Scholar
  46. [46]
    Zhang, G. J.; Zhang, L.; Shen, L. P.; Chen, Y.; Zhou, Y. M.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic properties of palladium network nanostructures. ChemPlusChem 2012, 77, 936–940.CrossRefGoogle Scholar
  47. [47]
    Tan, Y. M.; Fan, J. M.; Chen, G. X.; Zheng, N. F.; Xie, Q. J. Au/Pt and Au/Pt3Ni nanowires as self-supported electrocatalysts with high activity and durability for oxygen reduction. Chem. Commun. 2011, 47, 11624–11626.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShaanxi Normal UniversityXi’anChina
  2. 2.Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjingChina

Personalised recommendations