Skip to main content
Log in

Surface properties of encapsulating hydrophobic nanoparticles regulate the main phase transition temperature of lipid bilayers: A simulation study

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The main phase transition temperature of a lipid membrane, which is vital for its biomedical applications such as controllable drug release, can be regulated by encapsulating hydrophobic nanoparticles into the membrane. However, the exact relationship between surface properties of the encapsulating nanoparticles and the main phase transition temperature of a lipid membrane is far from clear. In the present work, we performed coarse-grained molecular dynamics simulations to meet this end. The results show the surface roughness of nanoparticles and the density of surface-modifying molecules on the nanoparticles are responsible for the regulation. Increasing the surface roughness of the nanoparticles increases the main phase transition temperature of the lipid membrane, whereas it can be decreased in a nonlinear way via increasing the density of surface-modifying molecules on the nanoparticles. The results may provide insights for understanding recent experimental studies and promote the applications of nanoparticles in controllable drug release by regulating the main phase transition temperature of lipid vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Jamal, W.; Kostarelos, K. Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine 2007, 2, 85–98.

    Article  Google Scholar 

  2. Zhang, L. F.; Granick, S. How to stabilize phospholipid liposomes (using nanoparticles). Nano Lett. 2006, 6, 694–698.

    Article  Google Scholar 

  3. Wang, B.; Zhang, L. F.; Bae, S. C.; Granick, S. Nanoparticle-induced surface reconstruction of phospholipid membranes. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 18171–18175.

    Article  Google Scholar 

  4. Urban, A. S.; Fedoruk, M.; Horton, M. R.; Rädler, J. O.; Stefani, F. D.; Feldmann, J. Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles. Nano Lett. 2009, 9, 2903–2908.

    Article  Google Scholar 

  5. Chen, Y. J.; Bose, A.; Bothun, G. D. Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating. ACS Nano 2010, 4, 3215–3221.

    Article  Google Scholar 

  6. Amstad, E.; Kohlbrecher, J.; Müller, E.; Schweizer, T.; Textor, M.; Reimhult, E. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett. 2011, 11, 1664–1670.

    Article  Google Scholar 

  7. An, X. Q.; Zhan, F.; Zhu, Y. Y. Smart photothermal-triggered bilayer phase transition in AuNPs-liposomes to release drug. Langmuir 2013, 29, 1061–1068.

    Article  Google Scholar 

  8. Gopalakrishnan, G.; Danelon, C.; Izewska, P.; Prummer, M.; Bolinger, P.-Y.; Geissbhler, I.; Demurtas, D.; Dubochet, J.; Vogel, H. Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew. Chem. Int. Ed. 2006, 45, 5478–5483.

    Article  Google Scholar 

  9. Marshall, J. D.; Schnitzer, M. J. Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. ACS Nano 2013, 7, 4601–4609.

    Article  Google Scholar 

  10. Qiao, R.; Roberts, A. P.; Mount, A. S.; Klaine, S. J.; Ke, P. C. Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett. 2007, 7, 614–619.

    Article  Google Scholar 

  11. Lin, X. B.; Li, Y.; Gu, N. Nanoparticle’s size effect on its translocation across a lipid bilayer: A molecular dynamics simulation. J. Comput. Theor. Nanosci. 2010, 7, 269–276.

    Article  Google Scholar 

  12. Ginzburg, V. V.; Balijepalli, S. Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett. 2007, 7, 3716–3722.

    Article  Google Scholar 

  13. Nangia, S.; Sureshkumar, R. Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes. Langmuir 2012, 28, 17666–17671.

    Article  Google Scholar 

  14. Wang, H. M.; Michielssens, S.; Moors, S. L. C.; Ceulemans, A. Molecular dynamics study of dipalmitoylphosphatidylcholine lipid layer self-assembly onto a single-walled carbon nanotube. Nano Res. 2009, 2, 945–954.

    Article  Google Scholar 

  15. Lehn, R. C. V.; Atukorale, P. U.; Carney, R. P.; Yang, Y. S.; Stellacci, F.; Irvine, D. J.; Alexander-Katz, A. Effect of particle diameter and surface composition on the spontaneous fusion of monolayer-protected gold nanoparticles with lipid bilayers. Nano Lett. 2013, 13, 4060–4067.

    Article  Google Scholar 

  16. Grzelczak, M.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791.

    Article  Google Scholar 

  17. Alkilany, A. M.; Lohse, S. E.; Murphy, C. J. The gold standard: Gold nanoparticle libraries to understand the nanobio interface. Acc. Chem. Res. 2013, 46, 650–661.

    Article  Google Scholar 

  18. Sun, Y. Controlled synthesis of colloidal silver nanoparticles inorganic solutions: Empirical rules for nucleation engineering. Chem. Soc. Rev. 2013, 42, 2497–2511.

    Article  Google Scholar 

  19. Kim, S. T.; Saha, K.; Kim, C.; Rotello, V. M. The role of surface functionality in determining nanoparticle cytotoxicity. Acc. Chem. Res. 2013, 46, 681–691.

    Article  Google Scholar 

  20. Rasch, M. R.; Rossinyol, E.; Hueso, J. L.; Goodfellow, B. W.; Arbiol, J.; Korgel, B. A. Hydrophobic gold nanoparticle self-assembly with phosphatidylcholine lipid: Membraneloaded and Janus vesicles. Nano Lett. 2010, 10, 3733–3739.

    Article  Google Scholar 

  21. Rasch, M. R.; Yu, Y.; Bosoy, C.; Goodfellow, B. W.; Korgel, B. A. Chloroform-enhanced incorporation of hydrophobic gold nanocrystals into dioleoylphosphatidylcholine (DOPC) vesicle membranes. Langmuir 2012, 28, 12971–12981.

    Article  Google Scholar 

  22. Lee, H.-Y.; Shin, S. H. R.; Abezgauz, L. L.; Lewis, S. A.; Chirsan, A. M.; Danino, D. D.; Bishop, K. J. M. Integration of gold nanoparticles into bilayer structures via adaptive surface chemistry. J. Am. Chem. Soc. 2013, 135, 5950–5953.

    Article  Google Scholar 

  23. Park, S.-H.; Oh, S.-G.; Mun, J.-Y.; Han, S.-S. Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome. Colloid Surf. B 2005, 44, 117–122.

    Article  Google Scholar 

  24. Park, S.-H.; Oh, S.-G.; Mun, J.-Y.; Han, S.-S. Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloid Surf. B 2006, 48, 112–118.

    Article  Google Scholar 

  25. Bothun, G. D. Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties. J. Nanobiotechnol. 2008, 6, 13.

    Article  Google Scholar 

  26. White, G. V.; Chen, Y. J.; Roder-Hanna, J.; Bothun, G. D.; Kitchens, C. L. Structural and thermal analysis of lipid vesicles encapsulating hydrophobic gold nanoparticles. ACS Nano 2012, 6, 4678–4685.

    Article  Google Scholar 

  27. Nagle, J. F. Theory of the main lipid bilayer phase transition. Ann. Rev. Phys. Chem. 1980, 31, 157–195.

    Article  Google Scholar 

  28. Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de Vries, A. H. The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B 2007, 111, 7812–7824.

    Article  Google Scholar 

  29. Ramalho, J. P. P.; Gkeka, P.; Sarkisov, L. Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: Insights from coarse-grained molecular dynamics simulations. Langmuir 2011, 27, 3723–3730.

    Article  Google Scholar 

  30. Rodgers, J. M.; Sørensen, J.; de Meyer, F. J.-M.; Schiøtt, B.; Smit, B. Understanding the phase behavior of coarse-grained model lipid bilayers through computational calorimetry. J. Phys. Chem. B 2012, 116, 1551–1569.

    Article  Google Scholar 

  31. Hakobyan, D.; Heuer, A. Phase separation in a lipid/cholesterol system: Comparison of coarse-grained and united-atom simulations. J. Phys. Chem. B 2013, 117, 3841–3851.

    Article  Google Scholar 

  32. Waheed, Q.; Tjörnhammar, R.; Edholm, O. Phase transitions in coarse-grained lipid bilayers containing cholesterol by molecular dynamics simulations. Biophys. J. 2012, 103, 2125–2133.

    Article  Google Scholar 

  33. Marrink, S. J.; Tieleman, D. P. Perspective on the Martini model. Chem. Soc. Rev. 2013, 42, 6801–6822.

    Article  Google Scholar 

  34. Li, Y.; Chen, X.; Gu, N. Computational investigation of interaction between nanoparticles and membranes: Hydrophobic/hydrophilic effect. J. Phys. Chem. B 2008, 112, 16647–16653.

    Article  Google Scholar 

  35. Li, Y.; Gu, N. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: A simulation study. J. Phys. Chem. B 2010, 114, 2749–2754.

    Article  Google Scholar 

  36. Lin, X. B.; Wang, C. L.; Wang, M.; Fang, K.; Gu, N. Computer simulation of the effects of nanoparticles’ adsorption on the properties of supported lipid bilayer. J. Phys. Chem. C 2012, 116, 17960–17968.

    Article  Google Scholar 

  37. Vácha, R.; Martinez-Veracoechea, F. J.; Frenkel, D. Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett. 2011, 11, 5391–5395.

    Article  Google Scholar 

  38. Vácha, R.; Martinez-Veracoechea, F. J.; Frenkel, D. Intracellular release of endocytosed nanoparticles upon a change of ligand-receptor interaction. ACS Nano 2012, 6, 10598–10605.

    Google Scholar 

  39. Yue, T. T.; Zhang, X. R. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles. ACS Nano 2012, 6, 3196–3205.

    Article  Google Scholar 

  40. Li, Y.; Yue, T. T.; Yang, K.; Zhang, X. R. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics. Biomaterials 2012, 33, 4965–4973.

    Article  Google Scholar 

  41. Huang, C. J.; Zhang, Y.; Yuan, H. Y.; Gao, H. J.; Zhang, S. L. Role of nanoparticle geometry in endocytosis: Laying down to stand up. Nano Lett. 2013, 13, 4546–4550.

    Article  Google Scholar 

  42. Yang, K.; Ma, Y.-Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat. Nanotechnol. 2010, 5, 579–583.

    Article  Google Scholar 

  43. Ding, H.-M.; Tian, W.-D.; Ma, Y.-Q. Designing nanoparticle translocation through membranes by computer simulations. ACS Nano 2012, 6, 1230–1238.

    Article  Google Scholar 

  44. Ding, H.-M.; Ma, Y.-Q. Controlling cellular uptake of nanoparticles with pH-sensitive polymers. Sci. Rep. 2013, 3, 2804.

    Google Scholar 

  45. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690.

    Article  Google Scholar 

  46. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

    Article  Google Scholar 

  47. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447.

    Article  Google Scholar 

  48. Koynova, R.; Caffrey, M. Phases and phase transitions of the phosphatidylcholines. Biochim. Biophys. Acta 1998, 1376, 91–145.

    Article  Google Scholar 

  49. Nagle, J. F.; Tristram-Nagle, S. Structure of lipid bilayers. Biochim. Biophys. Acta 2000, 1469, 159–195.

    Article  Google Scholar 

  50. Kong, X.; Qin, S. S.; Lu, D. N.; Liu, Z. Surface tension effects on the phase transition of a DPPC bilayer with and without protein: A molecular dynamics simulation. Phys. Chem. Chem. Phys. 2014, 16, 8434–8440.

    Article  Google Scholar 

  51. Marrink, S. J.; Risselada, J.; Mark, A. E. Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model. Chem. Phys. Lipids 2005, 135, 223–244.

    Article  Google Scholar 

  52. Marrink, S. J.; de Vries, A. H.; Mark, A. E. Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 2004, 108, 750–760.

    Article  Google Scholar 

  53. Mecke, A.; Majoros, I. J.; Patri, A. K.; Baker Jr, J. R.; Holl, M. M. B.; Orr, B. G. Lipid bilayer disruption by polycationic polymers: The roles of size and chemical functional group. Langmuir 2005, 21, 10348–10354.

    Article  Google Scholar 

  54. Shen, C. Y.; Lazouskaya, V.; Zhang, H. Y.; Wang, F.; Li, B. G.; Jin, Y.; Huang, Y. F. Theoretical and experimental investigation of detachment of colloids from rough collector surfaces. Colloid Surf. A 2012, 410, 98–110.

    Article  Google Scholar 

  55. Shen, C. Y.; Wang, F.; Li, B. G.; Jin, Y.; Wang, L.-P.; Huang, Y. F. Application of DLVO energy map to evaluate interactions between spherical colloids and rough surfaces. Langmuir 2012, 28, 14681–14692.

    Article  Google Scholar 

  56. Shen, C. Y.; Lazouskaya, V.; Zhang, H. Y.; Li, B. G.; Jin, Y.; Huang, Y. F. Influence of surface chemical heterogeneity on attachment and detachment of microparticles. Colloid Surf. A 2013, 433, 14–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Gu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Gu, N. Surface properties of encapsulating hydrophobic nanoparticles regulate the main phase transition temperature of lipid bilayers: A simulation study. Nano Res. 7, 1195–1204 (2014). https://doi.org/10.1007/s12274-014-0482-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0482-3

Keywords

Navigation