Nano Research

, Volume 7, Issue 8, pp 1188–1194 | Cite as

Straight and kinked InAs nanowire growth observed in situ by transmission electron microscopy

  • Filip LenrickEmail author
  • Martin Ek
  • Knut Deppert
  • Lars Samuelson
  • L. Reine WallenbergEmail author
Research Article


Live observations of growing nanowires using in situ transmission electron microscopy (TEM) is becoming an increasingly important tool for understanding the dynamic processes occurring during nanowire growth. Here we present observations of growing InAs nanowires, which constitute the first reported in situ growth of a In-V compound in a transmission electron microscope. Real time observations of events taking place over longer growth lengths were possible due to the high growth rates of up to 1 nm/s that were achieved. Straight growth (mainly in 〈111〉B directions) was observed at uniform temperature and partial pressure while intentional fluctuations in these conditions caused the nanowires to form kinks and change growth direction. The mechanisms behind the kinking are discussed in detail. In situ observations of nanowire kinking has previously only been reported for nonpolar diamond structure type materials (such as Si), but here we present results for a polar zinc blende structure (InAs). In this study a closed cell with electron and X-ray transparent a-SiN windows was used in a conventional high resolution transmission electron microscope, enabling high resolution imaging and compositional analysis in between the growth periods.


environmental TEM nanowires in situ InAs group III–V kinking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_481_MOESM1_ESM.pdf (2.9 mb)
Supplementary material, approximately 2.87 MB.

Supplementary material, approximately 2.87 MB.


  1. [1]
    Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060.CrossRefGoogle Scholar
  2. [2]
    Svensson, C. P. T.; Mårtensson, T.; Trägårdh, J.; Larsson, C.; Rask, M.; Hessman, D.; Samuelson, L.; Ohlsson, J. Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechnology 2008, 19, 305201.CrossRefGoogle Scholar
  3. [3]
    Nadj-Perge, S.; Frolov, S. M.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Spin-orbit qubit in a semiconductor nanowire. Nature 2010, 468, 1084–1087.CrossRefGoogle Scholar
  4. [4]
    Mourik, V.; Zuo, K.; Frolov, S. M.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 2012, 336, 1003–1007.CrossRefGoogle Scholar
  5. [5]
    Deng, M. T.; Yu, C. L.; Huang, G. Y.; Larsson, M.; Caroff, P.; Xu, H. Q. Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device. Nano Lett. 2012, 12, 6414–6419.CrossRefGoogle Scholar
  6. [6]
    Oh, S. H.; Chisholm, M. F.; Kauffmann, Y.; Kaplan, W. D.; Luo, W. D.; Rühle, M.; Scheu, C. Oscillatory mass transport in vapor-liquid-solid growth of sapphire nanowires. Science 2010, 330, 489–493.CrossRefGoogle Scholar
  7. [7]
    Gamalski, A. D.; Ducati, C.; Hofmann, S. Cyclic supersaturation and triple phase boundary dynamics in germanium nanowire growth. J. Phys. Chem. C 2011, 115, 4413–4417.CrossRefGoogle Scholar
  8. [8]
    Wen, C.-Y.; Tersoff, J.; Hillerich, K.; Reuter, M. C.; Park, J. H.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires. Phys. Rev. Lett. 2011, 107, 025503.CrossRefGoogle Scholar
  9. [9]
    Wen, C.-Y.; Reuter, M. C.; Bruley, J.; Tersoff, J.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Science 2009, 326, 1247–1250.CrossRefGoogle Scholar
  10. [10]
    Dick, K. A.; Kodambaka, S.; Reuter, M. C.; Deppert, K.; Samuelson, L.; Seifert, W.; Wallenberg, L. R.; Ross, F. M. The morphology of axial and branched nanowire heterostructures. Nano Lett. 2007, 7, 1817–1822.CrossRefGoogle Scholar
  11. [11]
    Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen, F.; Nørskov, J. K. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427, 426–429.CrossRefGoogle Scholar
  12. [12]
    Sharma, R.; Rez, P.; Treacy, M. M. J.; Stuart, S. J. In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions. J. Electron Microsc. 2005, 54, 231–237.CrossRefGoogle Scholar
  13. [13]
    Yoshida, H.; Takeda, S.; Uchiyama, T.; Kohno, H.; Homma, Y. Atomic-scale in-situ observations of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 2008, 8, 2082–2086.CrossRefGoogle Scholar
  14. [14]
    Ross, F. M.; Tersoff, J.; Reuter, M. C. Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 2005, 95, 146104.CrossRefGoogle Scholar
  15. [15]
    Wu, Y. Y.; Yang, P. D. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165–3166.CrossRefGoogle Scholar
  16. [16]
    Chou, Y.-C.; Hillerich, K.; Tersoff, J.; Reuter, M. C.; Dick, K. A.; Ross, F. M. Atomic-scale variability and control of III-V nanowire growth kinetics. Science 2014, 343, 281–284.CrossRefGoogle Scholar
  17. [17]
    Stach, E. A.; Pauzauskie, P. J.; Kuykendall, T.; Goldberger, J.; He, R. R.; Yang, P. D. Watching GaN nanowires grow. Nano Lett. 2003, 3, 867–869.CrossRefGoogle Scholar
  18. [18]
    Park, H. D.; Prokes, S. M.; Cammarata, R. C. Growth of epitaxial InAs nanowires in a simple closed system. Appl. Phys. Lett. 2005, 87, 063110.CrossRefGoogle Scholar
  19. [19]
    Heurlin, M.; Magnusson, M. H.; Lindgren, D.; Ek, M.; Wallenberg, L. R.; Deppert, K.; Samuelson, L. Continuous gas-phase synthesis of nanowires with tunable properties. Nature 2012, 492, 90–94.CrossRefGoogle Scholar
  20. [20]
    Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.CrossRefGoogle Scholar
  21. [21]
    Barns, R. L.; Ellis, W. C. Whisker crystals of gallium arsenide and gallium phosphide grown by the vapor-liquid-solid mechanism. J. Appl. Phys. 1965, 36, 2296–2301.CrossRefGoogle Scholar
  22. [22]
    Messing, M. E.; Hillerich, K.; Johansson, J.; Deppert, K.; Dick, K. A. The use of gold for fabrication of nanowire structures. Gold Bull. 2009, 42, 172–181.CrossRefGoogle Scholar
  23. [23]
    Persson, A. I.; Larsson, M. W.; Stenström, S.; Ohlsson, B. J.; Samuelson, L.; Wallenberg, L. R. Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater. 2004, 3, 677–681.CrossRefGoogle Scholar
  24. [24]
    Glas, F.; Harmand, J.-C.; Patriarche, G. Nucleation antibunching in catalyst-assisted nanowire growth. Phys. Rev. Lett. 2010, 104, 135501.CrossRefGoogle Scholar
  25. [25]
    Madras, P.; Dailey, E.; Drucker, J. Kinetically induced kinking of vapor-liquid-solid grown epitaxial Si nanowires. Nano Lett. 2009, 9, 3826–3830.CrossRefGoogle Scholar
  26. [26]
    Hillerich, K.; Dick, K. A.; Wen, C.-Y.; Reuter, M. C.; Kodambaka, S.; Ross, F. M. Strategies to control morphology in hybrid group III–V/group IV heterostructure nanowires. Nano Lett. 2013, 13, 903–908.CrossRefGoogle Scholar
  27. [27]
    Wacaser, B. A.; Deppert, K.; Karlsson, L. S.; Samuelson, L.; Seifert, W. Growth and characterization of defect free GaAs nanowires. J. Cryst. Growth 2006, 287, 504–508.CrossRefGoogle Scholar
  28. [28]
    Gamalski, A. D.; Tersoff, J.; Sharma, R.; Ducati, C.; Hofmann, S. Formation of metastable liquid catalyst during subeutectic growth of germanium nanowires. Nano Lett. 2010, 10, 2972–2976.CrossRefGoogle Scholar
  29. [29]
    Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 2007, 316, 729–732.CrossRefGoogle Scholar
  30. [30]
    Dayeh, S. A.; Wang, J.; Li, N.; Huang, J. Y.; Gin, A. V; Picraux, S. T. Growth, defect formation, and morphology control of germanium-silicon semiconductor nanowire heterostructures. Nano Lett. 2011, 11, 4200–4206.CrossRefGoogle Scholar
  31. [31]
    Schwarz, K.; Tersoff, J.; Kodambaka, S.; Chou, Y.-C.; Ross, F. M. Geometrical frustration in nanowire growth. Phys. Rev. Lett. 2011, 107, 265502.CrossRefGoogle Scholar
  32. [32]
    Shin, N.; Filler, M. A. Controlling silicon nanowire growth direction via surface chemistry. Nano Lett. 2012, 12, 2865–2870.CrossRefGoogle Scholar
  33. [33]
    Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.nCHREM/Centre for Analysis and SynthesisLund UniversityLundSweden
  2. 2.Division of Solid State PhysicsLund UniversityLundSweden
  3. 3.Haldor Topsøe A/SKgs. LyngbyDenmark

Personalised recommendations