Nano Research

, Volume 7, Issue 8, pp 1177–1187 | Cite as

Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection

  • Zhulin Huang
  • Guowen MengEmail author
  • Qing Huang
  • Bin Chen
  • Fei Zhou
  • Xiaoye Hu
  • Yiwu Qian
  • Haibin Tang
  • Fangming Han
  • Zhaoqin Chu
Research Article


Surface-enhanced Raman spectroscopy (SERS) is a fast analytical technique for trace chemicals; however, it requires the active SERS-substrates to adsorb analytes, thus limiting target species to those with the desired affinity for substrates. Here we present networked polyacrylic acid sodium salt (PAAS) film entrapped Ag-nanocubes (denoted as Ag-nanocubes@PAAS) as an effective SERS-substrate for analytes with and without high affinity. Once the analyte aqueous solution is cast on the dry Ag-nanocubes@PAAS substrate, the bibulous PAAS becomes swollen forcing the Ag-nanocubes loose, while the analytes diffuse in the interstices among the Ag-nanocubes. When dried, the PAAS shrinks and pulls the Ag-nanocubes back to their previous aggregated state, while the PAAS network “detains” the analytes in the small gaps between the Ag-nanocubes for SERS detection. The strategy has been proven effective for not only singleanalytes but also multi-analytes without strong affinity for Ag, showing its potential in SERS-based simultaneous multi-analyte detection of both adsorbable and non-adsorbable pollutants in the environment.


SERS Ag-nanocube polyacrylic acid sodium salt trace detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_480_MOESM1_ESM.pdf (4.2 mb)
Supplementary material, approximately 4.18 MB.


  1. [1]
    Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 1999, 99, 2957–2975.CrossRefGoogle Scholar
  2. [2]
    Zhang, X. Y.; Zhao, J.; Whitney, A. V.; Elam, J. W.; Van Duyne, R. P. Ultrastable substrates for surface enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 2006, 128, 10304–10309.CrossRefGoogle Scholar
  3. [3]
    Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; van Duyne, R. P. Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc. 2003, 125, 588–593.CrossRefGoogle Scholar
  4. [4]
    Liu, T.-Y.; Tsai, K.-T.; Wang, H.-H.; Chen, Y.; Chen, Y.-H.; Chao, Y.-C.; Chang, H.-H.; Lin, C.-H.; Wang, J.-K.; Wang, Y.-L. Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat. Commun. 2011, 2, 538.CrossRefGoogle Scholar
  5. [5]
    Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, 783–828.CrossRefGoogle Scholar
  6. [6]
    Wang, Y. D.; Lu, N.; Wang, W. T.; Liu, L. X.; Feng, L.; Zeng, Z. F.; Li, H. B.; X, W. Q.; Wu, Z. J.; Hu, W. et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 2013, 6, 159–166.CrossRefGoogle Scholar
  7. [7]
    Cho, W. J.; Kim, Y.; Kim, J. K. Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. ACS Nano 2012, 6, 249–255.CrossRefGoogle Scholar
  8. [8]
    Cecchini, M. P.; Turek, V. A.; Paget, J.; Kornyshev, A. A.; Edel, J. B. Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater. 2013, 12, 165–171.CrossRefGoogle Scholar
  9. [9]
    Lim, D.-K.; Jeon, K.-S.; Kim, H. M.; Nam, J.-M.; Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 2010, 9, 60–67.CrossRefGoogle Scholar
  10. [10]
    Li, W. Y.; Camargo, P. H. C.; Lu, X. M.; Xia, Y. N. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 2009, 9, 485–490.CrossRefGoogle Scholar
  11. [11]
    Rodríguez-Lorenzo, L.; Álvarez-Plubla, R. A.; Pastoriza-Santos, I.; Mazzucco, S.; Stéphan, O.; Kociak, M.; Liz-Marzán, L. M.; García de Abajo, F. J. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J. Am. Chem. Soc. 2009, 131, 4616–4618.CrossRefGoogle Scholar
  12. [12]
    Lee, S. Y.; Hung, L.; Lang, G. S.; Cornett, J. E.; Mayergoyz, I. D.; Rabin, O. Dispersion in the SERS enhancement with silver nanocube dimers. ACS Nano 2010, 4, 5763–5772.CrossRefGoogle Scholar
  13. [13]
    Rycenga, M; Xia, X. X.; Moran, C. H.; Zhou, F.; Qin, D.; Li, Z.-Y.; Xia. Y. N. Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. Angew. Chem. Int. Ed. 2011, 50, 5473–5477.CrossRefGoogle Scholar
  14. [14]
    Yap. F. L.; Thoniyot, P.; Krishnan, S.; Krishnamoorthy S. Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers. ACS Nano 2012, 6, 2056–2070.CrossRefGoogle Scholar
  15. [15]
    Theiss, J.; Pavaskar, P.; Echternach, P. M.; Muller, R. E.; Cronin, S. B. Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. Nano Lett. 2010, 10, 2749–2754.CrossRefGoogle Scholar
  16. [16]
    Huang, Z. L.; Meng, G. W.; Huang, Q.; Yang, Y. J.; Zhu, C. H; Tang, C. L. Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Adv. Mater. 2010, 22, 4136–4139.CrossRefGoogle Scholar
  17. [17]
    Caldwell, J. D.; Glembocki, O.; Bezares, F. J.; Bassim, N. D.; Rendell, R. W.; Feygelson, M.; Ukaegbu, M.; Kasica, R.; Shirey, L.; Hosten, C. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 2011, 5, 4046–4055.CrossRefGoogle Scholar
  18. [18]
    Li, Z. B.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Zhang, Z.; Li, X. D. Galvanic-cell-induced growth of Ag nanosheet-assembled structures as sensitive and reproducible SERS substrates. Chem. Eur. J. 2012, 18, 14948–14953.CrossRefGoogle Scholar
  19. [19]
    Zhu, C. H; Meng, G. W.; Huang, Q.; Zhang, Z.; Xu, Q. L.; Liu, G. Q.; Huang, Z. L.; Chu, Z. Q. Ag nanosheet-assembled micro-hemispheres as effective SERS substrates. Chem. Commun. 2011, 47, 2709–2711.CrossRefGoogle Scholar
  20. [20]
    Jones, C. L.; Bantz, K. C.; Haynes, C. L. Partition layer -modified substrates for reversible surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Anal. Bioanal. Chem. 2009, 394, 303–311.CrossRefGoogle Scholar
  21. [21]
    Alvarez-Puebla, R. A.; Liz-Marzán, L. M. Traps and cages for universal SERS detection. Chem. Soc. Rev. 2012, 41, 43–51.CrossRefGoogle Scholar
  22. [22]
    Huang, Z. L.; Meng, G. W.; Huang, Q.; Chen, B.; Zhu, C. H.; Zhang, Z. Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs. J. Raman Spectrosc. 2013, 44, 240–246.CrossRefGoogle Scholar
  23. [23]
    Guerrini, L.; Garcia-Ramos, J. V.; Domingo, C.; Sanchez-Cortes, S. Sensing polycyclic aromatic hydrocarbons with dithiocarbamate functionalized Ag nanoparticles by surface-enhanced Raman scattering. Anal. Chem. 2009, 81, 953–960.CrossRefGoogle Scholar
  24. [24]
    Cao, Y. W. C.; Jin, R. C.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297, 1536–1540.CrossRefGoogle Scholar
  25. [25]
    Álvarez-Puebla, R. A.; Contreras-Cáceres, R.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M. Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew. Chem. Int. Ed. 2009, 48, 138–143.CrossRefGoogle Scholar
  26. [26]
    Gehan. H.; Fillaud, L.; Chehimi, M. M.; Aubard, J.; Hohenau, A.; Felidj, N.; Mangeney, C. Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface-enhanced Raman scattering. ACS Nano 2010, 4, 6491–6500.CrossRefGoogle Scholar
  27. [27]
    Abalde-Cela, S.; Ho, S.; Rodríguez-González, B.; Correa-Duarte M. A.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M.; Kotov, N. A. Loading of exponentially grown LBL films with silver nanoparticles and their application to generalized SERS detection. Angew. Chem. Int. Ed. 2009, 48, 5326–5329.CrossRefGoogle Scholar
  28. [28]
    Contreras-Cáceres, R.; Abalde-Cela, S.; Guardia-Girós, P.; Fernández-Barbero, A.; Pérez-Juste, J.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M. Multifunctional microgel magnetic/optical traps for SERS ultradetection. Langmuir 2011, 27, 4520–4525.CrossRefGoogle Scholar
  29. [29]
    Skrabalak, S. E.; Au, L.; Li, X. D.; Xia, Y. N. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 9, 2182–2190.CrossRefGoogle Scholar
  30. [30]
    Tao, A. R.; Ceperley, D. P.; Sinsermsuksakul, P.; Neureuther, A. R.; Yang, P. D. Self-organized silver nanoparticles for three-dimensional plasmonic crystals. Nano Lett. 2008, 8, 4033–4038.CrossRefGoogle Scholar
  31. [31]
    Weaver, J. H.; Frederikse, H. P. R. Optical properties of selected elements. In CRC Handbook of Chemistry and Physics. Lide, D. R., Ed; Taylor & Francis: New York, 2005; 134–135.Google Scholar
  32. [32]
    Liu, M. Z.; Guo, T. H. Preparation and swelling properties of crosslinked sodium polyacrylate. J. Appl. Polym. Sci. 2001, 82, 1515–1520.CrossRefGoogle Scholar
  33. [33]
    Biswas, A.; Aktas, O. C.; Schürmann, U.; Saeed, U.; Zaporojtchenko, V.; Faupel, F.; Strunskus, T. Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems. Appl. Phys. Lett. 2004, 84, 2655–2657.CrossRefGoogle Scholar
  34. [34]
    Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803.CrossRefGoogle Scholar
  35. [35]
    Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.CrossRefGoogle Scholar
  36. [36]
    Etchegoin, P. G.; Le Ru, E. C. A perspective on single molecule SERS: Current status and future challenges. Phys. Chem. Chem. Phys. 2008, 10, 6079–6089.CrossRefGoogle Scholar
  37. [37]
    Liu, H. W.; Zhang, L.; Lang, X. Y.; Yamaguchi, Y.; Iwasaki, H.; Inouye, Y.; Xue, Q. K.; Chen, M. W. Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Sci. Rep. 2011, 1, 112.Google Scholar
  38. [38]
    Cheng, Y.; Dong, Y. Y.; Wu, J. H.; Yang, X. R.; Bai, H.; Zheng, H. Y.; Ren, D. M.; Zou, Y. D.; Li, M. Screening melamine adulterant in milk powder with laser Raman spectrometry. J. Food Compos. Anal. 2010, 23, 199–202.CrossRefGoogle Scholar
  39. [39]
    Jiménez-Vázquez, H. A.; Tamariz, J.; James Cross, R. Binding energy in and equilibrium constant of formation for the dodecahedrane compounds He@C20H20 and Ne@C20H20. J. Phys. Chem. A 2001, 105, 1315–1319.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zhulin Huang
    • 1
  • Guowen Meng
    • 1
    • 2
    Email author
  • Qing Huang
    • 3
  • Bin Chen
    • 1
  • Fei Zhou
    • 1
  • Xiaoye Hu
    • 1
  • Yiwu Qian
    • 1
  • Haibin Tang
    • 1
  • Fangming Han
    • 1
  • Zhaoqin Chu
    • 1
  1. 1.Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State PhysicsChinese Academy of SciencesHefeiChina
  2. 2.University of Science and Technology of ChinaHefeiChina
  3. 3.Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina

Personalised recommendations