Nano Research

, Volume 7, Issue 8, pp 1164–1176 | Cite as

Aqueous self-assembly and surface-functionalized nanodots for live cell imaging and labeling

  • Mei-Lang Kung
  • Pei-Ying Lin
  • Chiung-Wen Hsieh
  • Shuchen HsiehEmail author
Research Article


Nanoparticles have enormous potential for bioimaging and biolabeling applications, in which conventional organically based fluorescent labels degrade and fail to provide long-term tracking. Thus, the development of approaches to make fluorescent probes water soluble and label cells efficient is desirable for most biological applications. Here, we report on the fabrication and characterization of self-assembled nanodots (SANDs) from 3-aminopropyltriethoxysilane (APTES) as a probe for protein labeling. We show that fluorescent SAND probes exhibit both bright photoluminescence and biocompatibility in an aqueous environment. Selective in vitro imaging using protein and carbohydrate labeling of hepatoma cell lines are demonstrated using biocompatible SANDs conjugated with avidin and galactose, respectively. Cytotoxicity tests show that conjugated SAND particles have negligible effects on cell proliferation. Unlike other synthetic systems that require multistep treatments to achieve robust surface functionalization and to develop flexible bioconjugation strategies, our results demonstrate the versatility of this one-step SAND fabrication method for creating multicolor fluorescent probes with the tailored functionalities, efficient emission, as well as excellent biocompatibility, required for broad biological use.


atomic force microscopy hydrophilicity molecular imaging self-assembly silane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_479_MOESM1_ESM.pdf (3.4 mb)
Supplementary material, approximately 3.38 MB.


  1. [1]
    Bailey, R. E.; Smith, A. M.; Nie, S. M. Quantum dots in biology and medicine. Physica E 2004, 25, 1–12.CrossRefGoogle Scholar
  2. [2]
    Jaiswal, J. K.; Goldman, E. R.; Mattoussi, H.; Simon, S. M. Use of quantum dots for live cell imaging. Nat. Methods 2004, 1, 73–78.CrossRefGoogle Scholar
  3. [3]
    Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775.CrossRefGoogle Scholar
  4. [4]
    Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.CrossRefGoogle Scholar
  5. [5]
    Smith, A. M.; Dave, S.; Nie, S. M.; True, L.; Gao, X. H. Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev. Mol. Diagn. 2006, 6, 231–244.CrossRefGoogle Scholar
  6. [6]
    Selvan, S. T.; Tan, T. T. Y.; Yi, D. K.; Jana, N. R. Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 2010, 26, 11631–11641.CrossRefGoogle Scholar
  7. [7]
    King-Heiden, T. C.; Wiecinski, P. N.; Mangham, A. N.; Metz, K. M.; Nesbit, D.; Pedersen, J. A.; Hamers, R. J.; Heideman, W.; Peterson, R. E. Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ. Sci. Technol. 2009, 43, 1605–1611.CrossRefGoogle Scholar
  8. [8]
    Lin, P.-Y.; Hsieh, C.-W.; Kung, M.-L.; Hsieh, S. Substrate-free self-assembled SiOx-core nanodots from alkylalkoxysilane as a multicolor photoluminescence source for intravital imaging. Sci. Rep. 2013, 3, 1703.Google Scholar
  9. [9]
    Sun, X. P.; Wei, W. T. Electrostatic-assembly-driven formation of micrometer-scale supramolecular sheets of (3-aminopropyl)triethoxysilane(APTES)-HAuCl4 and their subsequent transformation into stable APTES bilayer-capped gold nanoparticles through a thermal process. Langmuir 2010, 26, 6133–6135.CrossRefGoogle Scholar
  10. [10]
    Chai, C.; Lee, J.; Takhistov, P. Direct detection of the biological toxin in acidic environment by electrochemical impedimetric immunosensor. Sensors 2010, 10, 11414–11427.CrossRefGoogle Scholar
  11. [11]
    Faucheux, N.; Schweiss, R.; Lützow, K.; Werner, C.; Groth, T. Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 2004, 25, 2721–2730.CrossRefGoogle Scholar
  12. [12]
    Smith, P. K.; Krohn, R. I.; Hermanson, G. T.; Mallia, A. K.; Gartner, F. H.; Provenzano, M. D.; Fujimoto, E. K.; Goeke, N. M.; Olson, B. J.; Klenk, D. C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85.CrossRefGoogle Scholar
  13. [13]
    Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356.CrossRefGoogle Scholar
  14. [14]
    Aissaoui, N.; Bergaoui, L.; Landoulsi, J.; Lambert, J.-F.; Boujday, S. Silane layers on silicon surfaces: Mechanism of interaction, stability, and influence on protein adsorption. Langmuir 2012, 28, 656–665.CrossRefGoogle Scholar
  15. [15]
    Llewellyn, N. M.; Spencer, J. B. Chemoenzymatic acylation of aminoglycoside antibiotics. Chem. Commun. 2008, 32, 3786–3788.CrossRefGoogle Scholar
  16. [16]
    Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 2001, 105, 8861–8871.CrossRefGoogle Scholar
  17. [17]
    Pellegrino, T.; Manna, L.; Kudera, S.; Liedl, T.; Koktysh, D.; Rogach, A. L.; Keller, S.; Rädler, J.; Natile, G.; Parak, W. J. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett. 2004, 4, 703–707.CrossRefGoogle Scholar
  18. [18]
    Chen, P.-C.; Chen, Y.-N.; Hsu, P.-C.; Shih, C.-C.; Chang, H.-T. Photoluminescent organosilane-functionalized carbon dots as temperature probes. Chem. Commun. 2013, 49, 1639–1641.CrossRefGoogle Scholar
  19. [19]
    Wang, F.; Xie, Z.; Zhang, H.; Liu, C.-Y.; Zhang, Y.-G. Highly luminescent organosilane-functionalized carbon dots. Adv. Funct. Mater. 2011, 21, 1027–1031.CrossRefGoogle Scholar
  20. [20]
    Cheang, T.-Y.; Tang, B.; Xu, A.-W.; Chang, G.-Q.; Hu, Z.-J.; He, W.-L.; Xing, Z.-H.; Xu, J.-B.; Wang, M.; Wang, S.-M. Promising plasmid DNA vector based on APTES-modified silica nanoparticles. Int. J. Nanomed. 2012, 7, 1061–1067.Google Scholar
  21. [21]
    Lu, G. H.; Mao, S.; Park, S. J.; Ruoff, R. S.; Chen, J. H. Facile, noncovalent decoration of graphene oxide sheets with nanocrystals. Nano Res. 2009, 2, 192–200.CrossRefGoogle Scholar
  22. [22]
    Kim, J.; Seidler, P.; Wan, L. S.; Fill, C. Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. J. Colloid Interf. Sci. 2009, 329, 114–119.CrossRefGoogle Scholar
  23. [23]
    Evans, D. The systematic identification of organic compounds. J. Chem. Educ. 1999, 76, 1069.CrossRefGoogle Scholar
  24. [24]
    Bistričić, L.; Volovšek, V.; Dananić, V. Conformational and vibrational analysis of gamma-aminopropyltriethoxysilane. J. Mol. Struct. 2007, 834-836, 355–363.CrossRefGoogle Scholar
  25. [25]
    Vandenberg, E. T.; Bertilsson, L.; Liedberg, B.; Uvdal, K.; Erlandsson, R.; Elwing, H.; Lundstrom, I. Structure of 3-aminopropyl triethoxy silane on silicon-oxide. J. Colloid Interf. Sci. 1991, 147, 103–118.CrossRefGoogle Scholar
  26. [26]
    Léandri, C.; Oughaddou, H.; Aufray, B.; Gay, J. M.; Le Lay, G.; Ranguis, A.; Garreau, Y. Growth of Si nanostructures on Ag(001). Surf. Sci. 2007, 601, 262–267.CrossRefGoogle Scholar
  27. [27]
    Seah, M. P.; Gilmore, I. S.; Spencer, S. J. Quantitative XPS: I. Analysis of X-ray photoelectron intensities from elemental data in a digital photoelectron database. J. Electron Spectrosc. 2001, 120, 93–111.CrossRefGoogle Scholar
  28. [28]
    Sharma, P.; Brown, S.; Walter, G.; Santra, S.; Moudgil, B. Nanoparticles for bioimaging. Adv. Colloid Interfac. 2006, 123–126, 471–485.CrossRefGoogle Scholar
  29. [29]
    Eck, W.; Nicholson, A. I.; Zentgraf, H.; Semmler, W.; Bartling, S. Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice. Nano Lett. 2010, 10, 2318–2322.CrossRefGoogle Scholar
  30. [30]
    Zhuo, Y.; Chai, Y.-Q.; Yuan, R.; Mao, L.; Yuan, Y.-L.; Han, J. Glucose oxidase and ferrocene labels immobilized at Au/TiO2 nanocomposites with high load amount and activity for sensitive immunoelectrochemical measurement of ProGRP biomarker. Biosens. Bioelectron. 2011, 26, 3838–3844.CrossRefGoogle Scholar
  31. [31]
    Qiao, Z.-A.; Wang, Y. F.; Gao, Y.; Li, H. W.; Dai, T. Y.; Liu, Y. L.; Huo, Q. S. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem. Commun. 2010, 46, 8812–8814.CrossRefGoogle Scholar
  32. [32]
    Li, Y.; Hu, Y.; Zhao, Y.; Shi, G. Q.; Deng, L.; Hou, Y. B. Qu, L. T. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 2011, 23, 776–780.CrossRefGoogle Scholar
  33. [33]
    Liu, R. L.; Wu, D. Q.; Liu, S. H.; Koynov, K.; Knoll, W.; Li, Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. Int. Ed. 2009, 48, 4598–4601.CrossRefGoogle Scholar
  34. [34]
    Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F., et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.CrossRefGoogle Scholar
  35. [35]
    Liu, H. P.; Ye, T. Mao, C. D. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 2007, 46, 6473–6475.CrossRefGoogle Scholar
  36. [36]
    Doherty, G. J.; McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 2009, 78, 857–902.CrossRefGoogle Scholar
  37. [37]
    Hillaireau, H.; Couvreur, P. Nanocarriers’ entry into the cell: Relevance to drug delivery. Cell. Mol. Life Sci. 2009, 66, 2873–2896.CrossRefGoogle Scholar
  38. [38]
    Perumal, O. P.; Inapagolla, R.; Kannan, S.; Kannan, R. M. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 2008, 29, 3469–3476.CrossRefGoogle Scholar
  39. [39]
    Liu, T.; Wang, S.; Chen, G. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis. Talanta 2009, 77, 1767–1773.CrossRefGoogle Scholar
  40. [40]
    Jang, L.-S.; Liu, H.-J. Fabrication of protein chips based on 3-aminopropyltriethoxysilane as a monolayer. Biomed. Microdevices 2009, 11, 331–338.CrossRefGoogle Scholar
  41. [41]
    Zhong, Z. Y.; Shan, J. L.; Zhang, Z. M.; Qing, Y.; Wang, D. The signal-enhanced label-free immunosensor based on assembly of prussian blue-SiO2 nanocomposite for amperometric measurement of neuron-specific enolase. Electroanalysis 2010, 22, 2569–2575.CrossRefGoogle Scholar
  42. [42]
    Chuang, Y.-H.; Chang, Y.-T.; Liu, K.-L.; Chang, H.-Y.; Yew, T.-R. Electrical impedimetric biosensors for liver function detection. Biosens. Bioelectron. 2011, 28, 368–372.CrossRefGoogle Scholar
  43. [43]
    Livnah, O.; Bayer, E. A.; Wilchek, M.; Sussman, J. L. Three-dimensional structures of avidin and the avidinbiotin complex. Proc. Natl. Acad. Sci. USA. 1993, 90, 5076–5080.CrossRefGoogle Scholar
  44. [44]
    Hiller, Y.; Gershoni, J. M.; Bayer, E. A.; Wilchek, M. Biotin binding to avidin. Oligosaccharide side chain not required for ligand association. Biochem. J. 1987, 248, 167–171.Google Scholar
  45. [45]
    Said, H. M.; Ma, T. Y.; Kamanna, V. S. Uptake of biotin by human hepatoma cell line, Hep G2: A carrier-mediated process similar to that of normal liver. J. Cell. Physiol. 1994, 161, 483–489.CrossRefGoogle Scholar
  46. [46]
    Zempleni, J.; Mock, D. M. Biotin biochemistry and human requirements. J. Nutr. Biochem. 1999, 10, 128–138.CrossRefGoogle Scholar
  47. [47]
    Wang, Y.-C.; Liu, X.-Q.; Sun, T.-M.; Xiong, M.-H.; Wang, J. Functionalized micelles from block copolymer of polyphosphoester and poly(ɛ-caprolactone) for receptor-mediated drug delivery. J. Control. Release 2008, 128, 32–40.CrossRefGoogle Scholar
  48. [48]
    David, S.; Passirani, C.; Carmoy, N.; Morille, M.; Mevel, M.; Chatin, B.; Benoit, J.-P.; Montier, T.; Pitard, B. DNA nanocarriers for systemic administration: Characterization and in vivo bioimaging in healthy mice. Mol. Ther. Nucleic Acids 2013, 2, e64.CrossRefGoogle Scholar
  49. [49]
    Nagabhushan, T. L.; Cooper, A. B.; Turner, W. N.; Tsai, H.; McCombie, S.; Mallams, A. K.; Rane, D.; Wright, J. J.; Reichert, P. Interaction of vicinal and nonvicinal aminohydroxy group pairs in aminoglycoside-aminocyclitol antibiotics with transition metal cations. Selective N protection. J. Am. Chem. Soc. 1978, 100, 5253–5254.CrossRefGoogle Scholar
  50. [50]
    Basiruddin, S. K.; Ranjan Maity, A.; Jana, N. R. Glucose/galactose/dextran-functionalized quantum dots, iron oxide and doped semiconductor nanoparticles with <100 nm hydrodynamic diameter. RSC Adv. 2012, 2, 11915–11921.CrossRefGoogle Scholar
  51. [51]
    Khorev, O.; Stokmaier, D.; Schwardt, O.; Cutting, B.; Ernst, B. Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor. Biorgan. Med. Chem. 2008, 16, 5216–5231.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mei-Lang Kung
    • 1
  • Pei-Ying Lin
    • 1
  • Chiung-Wen Hsieh
    • 1
  • Shuchen Hsieh
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry and Center for Nanoscience and Nanotechnology“National Sun Yat-sen University”KaohsiungTaiwan
  2. 2.School of Pharmacy, College of PharmacyKaohsiung Medical UniversityKaohsiungTaiwan

Personalised recommendations