Nano Research

, Volume 7, Issue 8, pp 1154–1163 | Cite as

TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells

  • Amit Thapa
  • Jiantao Zai
  • Hytham Elbohy
  • Prashant Poudel
  • Nirmal Adhikari
  • Xuefeng QianEmail author
  • Qiquan QiaoEmail author
Research Article


Urchin-like SnO2 microspheres have been grown for use as photoanodes in dye-sensitized solar cells (DSSCs). We observed that a thin layer coating of TiO2 on urchin-like SnO2 microsphere photoanodes greatly enhanced dye loading capability and light scattering ability, and achieved comparable solar cell performance even at half the thickness of a typical nanocrystalline TiO2 photoanode. In addition, this photoanode only required attaching ∼55% of the amount of dye for efficient light harvesting compared to one based on nanocrystalline TiO2. Longer decay of transient photovoltage and higher charge recombination resistance evidenced from electrochemical impedance spectroscopy of the devices based on TiO2 coated urchin-like SnO2 revealed slower recombination rates of electrons as a result of the thin blocking layer of TiO2 coated on urchinlike SnO2. TiO2 coated urchin-like SnO2 showed the highest value (76.1 ms) of electron lifetime (τ) compared to 2.4 ms for bare urchin-like SnO2 and 14.9 ms for nanocrystalline TiO2. TiO2 coated SnO2 showed greatly enhanced open circuit voltage (V oc), short-circuit current density (J sc) and fill factor (FF) leading to a four-fold increase in efficiency increase compared to bare SnO2. Although TiO2 coated urchin-like SnO2 showed slightly lower cell efficiency than nanocrystalline TiO2, it only used a half thickness of photoanode and saved ∼45% of the amount of dye for efficient light harvesting compared to normal nanocrystalline TiO2.


TiO2 coating dye-sensitized solar cells urchin-like SnO2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Mei, X. G.; Cho, S. J.; Fan, B. H.; Ouyang, J. Y. High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode. Nanotechnology 2010, 21, 395202.CrossRefGoogle Scholar
  2. [2]
    Grätzel, M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 2005, 44, 6841–6851.CrossRefGoogle Scholar
  3. [3]
    Zhang, W.; Zhu, R.; Ke, L.; Liu, X. Z.; Liu, B.; Ramakrishna, S. Anatase mesoporous TiO2 nanofibers with high surface area for solid-state dye-sensitized solar cells. Small 2010, 6, 2176–2182.CrossRefGoogle Scholar
  4. [4]
    Poudel, P.; Qiao, Q. Q. One dimensional nanostructure/nanoparticle composites as photoanodes for dye-sensitized solar cells. Nanoscale 2012, 4, 2826–2838.CrossRefGoogle Scholar
  5. [5]
    Wu, M. X.; Lin, X.; Wang, T. H.; Qiu, J. S.; Ma, T. L. Lowcost dye-sensitized solar cell based on nine kinds of carbon counter electrodes. Energy Environ. Sci. 2011, 4, 2308–2315.CrossRefGoogle Scholar
  6. [6]
    Shao, F.; Sun, J.; Gao, L.; Yang, S. W.; Luo, J. Q. Growth of various TiO2 nanostructures for dye-sensitized dolar cells. J. Phys. Chem. C 2010, 115, 1819–1823.CrossRefGoogle Scholar
  7. [7]
    Joshi, P.; Xie, Y.; Ropp, M.; Galipeau, D.; Bailey, S.; Qiao, Q. Q. Dye-sensitized solar cells based on low cost nanoscale carbon/TiO2 composite counter electrode. Energy Environ. Sci. 2009, 2, 426–429.CrossRefGoogle Scholar
  8. [8]
    Joshi, P.; Zhang, L. F.; Chen, Q. L.; Galipeau, D.; Fong, H.; Qiao, Q. Q. Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2010, 2, 3572–3577.CrossRefGoogle Scholar
  9. [9]
    Poudel, P.; Zhang, L. F.; Joshi, P.; Venkatesan, S.; Fong, H.; Qiao, Q. Q. Enhanced performance in dye-sensitized solar cells via carbon nanofibers-platinum composite counter electrodes. Nanoscale 2012, 4, 4726–4730.CrossRefGoogle Scholar
  10. [10]
    Joshi, P.; Zhou, Z. P.; Poudel, P.; Thapa, A.; Wu, X.-F.; Qiao, Q. Q. Nickel incorporated carbon nanotube/nanofiber composites as counter electrodes for dye-sensitized solar cells. Nanoscale 2012, 4, 5659–5664.CrossRefGoogle Scholar
  11. [11]
    Peng, M.; Cai, X.; Fu, Y. P.; Yu, X.; Liu, S. Q.; Deng, B.; Hany, K.; Zou, D. C. Facial synthesis of SnO2 nanoparticle film for efficient fiber-shaped dye-sensitized solar cells. J. Power Sources 2014, 247, 249–255.CrossRefGoogle Scholar
  12. [12]
    Song, H.; Lee, K.-H.; Jeong, H.; Um, S. H.; Han, G.-S.; Jung, H. S.; Jung, G. Y. A simple self-assembly route to single crystalline SnO2 nanorod growth by oriented attachment for dye sensitized solar cells. Nanoscale 2013, 5, 1188–1194.CrossRefGoogle Scholar
  13. [13]
    Ramasamy, E.; Lee, J. Ordered mesoporous SnO2-based photoanodes for high-performance dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 22032–22037.CrossRefGoogle Scholar
  14. [14]
    Bendall, J. S.; Etgar, L.; Tan, S. C.; Cai, N.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M.; Welland, M. E. An efficient DSSC based on ZnO nanowire photo-anodes and a new D-π-A organic dye. Energy Environ. Sci. 2011, 4, 2903–2908.CrossRefGoogle Scholar
  15. [15]
    Xia, J. B.; Li, F. Y.; Yang, S. M.; Huang, C. H. Composite electrode SnO2/TiO2 for dye-sensitized solar cells. Chin. Chem. Lett. 2004, 15, 619–622.Google Scholar
  16. [16]
    Chen, S. G.; Chappel, S.; Diamant, Y.; Zaban, A. Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells. Chem. Mater. 2001, 13, 4629–4634.CrossRefGoogle Scholar
  17. [17]
    Zhu, P. N.; Reddy, M. V.; Wu, Y. Z.; Peng, S. J.; Yang, S. Y.; Nair, A. S.; Loh, K. P.; Chowdari, B. V. R.; Ramakrishna, S. Mesoporous SnO2 agglomerates with hierarchical structures as an efficient dual-functional material for dye-sensitized solar cells. Chem. Commun. 2012, 48, 10865–10867.CrossRefGoogle Scholar
  18. [18]
    Chen, J.; Li, C.; Xu, F.; Zhou, Y. D.; Lei, W.; Sun, L. T.; Zhang, Y. Hollow SnO2 microspheres for high-efficiency bilayered dye sensitized solar cell. RSC Adv. 2012, 2, 7384–7387.CrossRefGoogle Scholar
  19. [19]
    Birkel, A.; Lee, Y.-G.; Koll, D.; Meerbeek, X. V.; Frank, S.; Choi, M. J.; Kang, Y. S.; Char, K.; Tremel, W. Highly efficient and stable dye-sensitized solar cells based on SnO2 nanocrystals prepared by microwave-assisted synthesis. Energy Environ. Sci. 2012, 5, 5392–5400.CrossRefGoogle Scholar
  20. [20]
    Gubbala, S.; Chakrapani, V.; Kumar, V.; Sunkara, M. K. Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires. Adv. Funct. Mater. 2008, 18, 2411–2418.CrossRefGoogle Scholar
  21. [21]
    Prasittichai, C.; Hupp, J. T. Surface modification of SnO2 photoelectrodes in dye-sensitized solar cells: Significant improvements in photovoltage via Al2O3 atomic layer deposition. J. Phys. Chem. Lett. 2010, 1, 1611–1615.CrossRefGoogle Scholar
  22. [22]
    Qian, J. F.; Liu, P.; Xiao, Y.; Jiang, Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv. Mater. 2009, 21, 3663–3667.CrossRefGoogle Scholar
  23. [23]
    Green, A. N. M.; Palomares, E.; Haque, S. A.; Kroon, J. M.; Durrant, J. R. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. J. Phys. Chem. B 2005, 109, 12525–12533.CrossRefGoogle Scholar
  24. [24]
    Bandaranayake, K. M. P.; Senevirathna, M. K. I.; Weligamuwa, P.; Tennakone, K. Dye-sensitized solar cells made from nanocrystalline TiO2 films coated with outer layers of different oxide materials. Coord. Chem. Rev. 2004, 248, 1277–1281.CrossRefGoogle Scholar
  25. [25]
    Kay, A.; Grätzel, M. Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem. Mater. 2002, 14, 2930–2935.CrossRefGoogle Scholar
  26. [26]
    Wang, Y.-F.; Li, K.-N.; Liang, C.-L.; Hou, Y.-F.; Su, C.-Y.; Kuang, D.-B. Synthesis of hierarchical SnO2 octahedra with tailorable size and application in dye-sensitized solar cells with enhanced power conversion efficiency. J. Mater. Chem. 2012, 22, 21495–21501.CrossRefGoogle Scholar
  27. [27]
    Joshi, R. K.; Schneider, J. J. Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality. Chem. Soc. Rev. 2012, 41, 5285–5312.CrossRefGoogle Scholar
  28. [28]
    Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourga, M. E.; Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226–252.CrossRefGoogle Scholar
  29. [29]
    Tsakalakos, L. Nanostructures for photovoltaics. Mat. Sci. Eng. R 2008, 62, 175–189.CrossRefGoogle Scholar
  30. [30]
    Li, L.; Zhai, T. Y.; Bando, Y.; Golberg, D. Recent progress of one-dimensional ZnO nanostructured solar cells. Nano Energy 2012, 1, 91–106.CrossRefGoogle Scholar
  31. [31]
    Santulli, A. C.; Koenigsmann, C.; Tiano, A. L.; DeRosa, D.; Wong, S. S. Correlating titania morphology and chemical composition with dye-sensitized solar cell performance. Nanotechnology 2011, 22, 245402.CrossRefGoogle Scholar
  32. [32]
    Fan, K.; Peng, T. Y.; Chen, J. N.; Zhang, X. H.; Li, R. J. A simple preparation method for quasi-solid-state flexible dye-sensitized solar cells by using sea urchin-like anatase TiO2 microspheres. J. Power Sources 2013, 222, 38–44.CrossRefGoogle Scholar
  33. [33]
    Lee, K. E.; Charbonneau, C.; Demopoulos, G. P. Thin single screen-printed bifunctional titania layer photoanodes for high performing DSSCs via a novel hybrid paste formulation and process. J. Mater. Res. 2013, 28, 480–487.CrossRefGoogle Scholar
  34. [34]
    Guérin, V. M.; Elias, J.; Nguyen, T. T.; Philippe, L.; Pauporté, T. Ordered networks of ZnO-nanowire hierarchical urchin-like structures for improved dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2012, 14, 12948–12955.CrossRefGoogle Scholar
  35. [35]
    Hieu, H. N.; Dung, N. Q.; Kim, J.; Kim, D. Urchin-like nanowire array: A strategy for high-performance ZnO-based electrode utilized in photoelectrochemistry. Nanoscale 2013, 5, 5530–5538.CrossRefGoogle Scholar
  36. [36]
    Wang, H. Q.; Xin, L.; Wang, H.; Yu, X.; Liu, Y.; Zhou, X.; Li, B. J. Aggregation-induced growth of hexagonal ZnO hierarchical mesocrystals with interior space: Nonaqueous synthesis, growth mechanism, and optical properties. RSC Adv. 2013, 3, 6538–6544.CrossRefGoogle Scholar
  37. [37]
    Kim, J.; Kang, M. High photocatalytic hydrogen production over the band gap-tuned urchin-like Bi2S3-loaded TiO2 composites system. Int. J. Hydrogen Energy 2012, 37, 8249–8256.CrossRefGoogle Scholar
  38. [38]
    Hu, L.; Chen, G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic aplications. Nano Lett. 2007, 7, 3249–3252.CrossRefGoogle Scholar
  39. [39]
    Sun, P.; You. L.; Sun, Y. F.; Chen, N. K.; Li, X. B.; Sun, H. B.; Ma, J.; Lu, G. Y. Novel Zn-doped SnO2 hierarchical architectures: Synthesis, characterization, and gas sensing properties. CrystEngComm 2012, 14, 1701–1708.CrossRefGoogle Scholar
  40. [40]
    Xu, J.; Li, Y. S.; Huang, H. T.; Zhu, Y. G.; Wang, Z. R.; Xie, Z.; Wang, X. F.; Chen, D.; Shen, G. Z. Synthesis, characterizations and improved gas-sensing performance of SnO2 nanospike arrays. J. Mater. Chem. 2011, 21, 19086–19092.CrossRefGoogle Scholar
  41. [41]
    Jia. T. K.; Wang, W. M.; Long, F.; Fu, Z. Y.; Wang, H.; Zhang, Q. J. Synthesis, characterization, and photocatalytic activity of Zn-doped SnO2 hierarchical architectures assembled by nanocones. J. Phys. Chem. C 2009, 113, 9071–9077.CrossRefGoogle Scholar
  42. [42]
    Wang, H. Z.; Liang, J. B.; Fan, H.; Xi, B. J.; Zhang, M. F.; Xiong, S. L.; Zhu, Y. C.; Qian, Y. T. Synthesis and gas sensitivities of SnO2 nanorods and hollow microspheres. J. Solid State Chem. 2008, 181, 122–129.CrossRefGoogle Scholar
  43. [43]
    Liu, S. Q.; Xie, M. J.; Li, Y. X.; Guo, X. F.; Ji, W. J.; Ding, W. P.; Au, C. Novel sea urchin-like hollow core-shell SnO2 superstructures: Facile synthesis and excellent ethanol sensing performance. Sensor Actuat. B-Chem. 2010, 151, 229–235.CrossRefGoogle Scholar
  44. [44]
    Tiwana, P.; Docampo, P.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano 2011, 5, 5158–5166.CrossRefGoogle Scholar
  45. [45]
    Zheng, D. J.; Lv, M. Q.; Wang, S. P.; Guo, W. X.; Sun, L.; Lin, C. J. A combined TiO2 structure with nanotubes and nanoparticles for improving photoconversion efficiency in dye-sensitized solar cells. Electrochim. Acta 2012, 83, 155–159.CrossRefGoogle Scholar
  46. [46]
    Fadadu, K. B.; Soni, S. S. Spectral sensitization of TiO2 by new hemicyanine dyes in dye solar cell yielding enhanced photovoltage: Probing chain length effect on performance. Electrochim. Acta 2013, 88, 270–277.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Amit Thapa
    • 1
  • Jiantao Zai
    • 2
  • Hytham Elbohy
    • 1
  • Prashant Poudel
    • 1
  • Nirmal Adhikari
    • 1
  • Xuefeng Qian
    • 2
    Email author
  • Qiquan Qiao
    • 1
    Email author
  1. 1.Center for Advanced Photovoltaics, Department of Electrical EngineeringSouth Dakota State UniversityBrookingsUSA
  2. 2.School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations