Nano Research

, Volume 7, Issue 8, pp 1146–1153 | Cite as

Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation

  • Shermin Arab
  • P. Duke Anderson
  • Maoqing Yao
  • Chongwu Zhou
  • P. Daniel Dapkus
  • Michelle L. Povinelli
  • Stephen B. Cronin
Research Article

Abstract

We report substantial improvements in the photoluminescence (PL) efficiency and Fabry-Perot (FP) resonance of individual GaAs nanowires through surface passivation and local field enhancement, enabling FP peaks to be observed even at room temperature. For bare GaAs nanowires, strong FP resonance peaks can be observed at 4 K, but not at room temperature. However, depositing the nanowires on gold substrates leads to substantial enhancement in the PL intensity (5X) and 3.7X to infinite enhancement of FP peaks. Finite-difference time-domain (FDTD) simulations show that the gold substrate enhances the PL spectra predominately through enhanced absorption (11X) rather than enhanced emission (1.3X), predicting a total PL enhancement of 14X in the absence of non-radiative recombination. Despite the increased intensity of the FP peaks, lower Q factors are observed due to losses associated with the underlying gold substrate. As a means of reducing the non-radiative recombination in these nanowires, the surface states in the nanowires can be passivated by either an ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM TFSI)) or an AlGaAs surface layer to achieve up to 12X enhancement of the photoluminescence intensity and observation of FP peaks at room temperature without a gold substrate.

Keywords

MOCVD GaAs nanowires photoluminescence Fabry-Perot ionic liquid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_477_MOESM1_ESM.pdf (567 kb)
Supplementary material, approximately 567 KB.

References

  1. [1]
    Lin, C. X.; Povinelli, M. L. Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics. Opt. Express 2011, 19, A1148–A1154.CrossRefGoogle Scholar
  2. [2]
    Madaria, A. R.; Yao, M. Q.; Chi, C. Y.; Huang, N. F.; Lin, C. X.; Li, R. J.; Povinelli, M. L.; Dapkus, P. D.; Zhou, C. W. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth. Nano Lett. 2012, 12, 2839–2845.CrossRefGoogle Scholar
  3. [3]
    Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149–152.CrossRefGoogle Scholar
  4. [4]
    Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J. A.; Turner-Evans, D. B.; Putnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 2010, 9, 239–244.Google Scholar
  5. [5]
    Liu, D. K.; You, L. X.; Chen, S. J.; Yang, X. Y.; Wang, Z.; Wang, Y. L.; Xie, X. M.; Jiang, M. H. Electrical characteristics of superconducting nanowire single photon detector. IEEE Trans. Appl. Supercond. 2013, 23, 2200804.CrossRefGoogle Scholar
  6. [6]
    Schuck, C.; Pernice, W. H. P.; Tang, H. X. NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits. Appl. Phys. Lett. 2013, 102, 051101.CrossRefGoogle Scholar
  7. [7]
    Hasegawa, H. Control of surfaces and heterointerfaces of AlGaN/GaN system for sensor devices and their on-chip integration on nanostructures. Curr. Appl. Phys. 2007, 7, 318–327.CrossRefGoogle Scholar
  8. [8]
    Rosenberg, D.; Kerman, A. J.; Molnar, R. J.; Dauler, E. A. High-speed and high-efficiency superconducting nanowire single photon detector array. Opt. Express 2013, 21, 1440–1447.CrossRefGoogle Scholar
  9. [9]
    Wu, H.; Xu, M.; Wang, Y. C.; Zheng, G. F. Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Res. 2013, 6, 167–173.CrossRefGoogle Scholar
  10. [10]
    Hua, B.; Motohisa, J.; Ding, Y.; Hara, S.; Fukui, T. Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy. Appl. Phys. Lett. 2007, 91, 131112.CrossRefGoogle Scholar
  11. [11]
    Saxena, D.; Mokkapati, S.; Jagadish, C. Semiconductor nanolasers. IEEE Photonics J. 2012, 4, 582–585.CrossRefGoogle Scholar
  12. [12]
    Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241–245.CrossRefGoogle Scholar
  13. [13]
    Chu, S.; Wang, G. P.; Zhou, W. H.; Lin, Y. Q.; Chernyak, L.; Zhao, J. Z.; Kong, J. Y.; Li, L.; Ren, J. J.; Liu, J. L. Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 2011, 6, 506–510.CrossRefGoogle Scholar
  14. [14]
    Hua, B.; Motohisa, J.; Kobayashi, Y.; Hara, S.; Fukui, T. Single GaAs/GaAsP coaxial core-shell nanowire lasers. Nano Lett. 2009, 9, 112–116.CrossRefGoogle Scholar
  15. [15]
    Yang, L.; Motohisa, J.; Fukui, T.; Jia, L. X.; Zhang, L.; Geng, M. M.; Chen, P.; Liu, Y. L. Fabry-Pérot microcavity modes observed in the micro-photoluminescence spectra of the single nanowire with InGaAs/GaAs heterostructure. Opt. Express 2009, 17, 9337–9346.CrossRefGoogle Scholar
  16. [16]
    Chang, C.-C.; Chi, C.-Y.; Yao, M. Q.; Huang, N. F.; Chen, C.-C.; Theiss, J.; Bushmaker, A. W.; LaLumondiere, S.; Yeh, T.-W.; Povinelli, M. L.; et al. Electrical and optical characterization of surface passivation in GaAs nanowires. Nano Lett. 2012, 12, 4484–4489.CrossRefGoogle Scholar
  17. [17]
    Offsey, S. D.; Woodall, J. M.; Warren, A. C.; Kirchner, P. D.; Chappell, T. I.; Pettit, G. D. Unpinned (100) GaAs surfaces in air using photochemistry. Appl. Phys. Lett. 1986, 48, 475–477.CrossRefGoogle Scholar
  18. [18]
    Yablonovitch, E.; Sandroff, C. J.; Bhat, R.; Gmitter, T. Nearly ideal electronic-properties of sulfide coated GaAs surfaces. Appl. Phys. Lett. 1987, 51, 439–441.CrossRefGoogle Scholar
  19. [19]
    Wilmsen, C. W.; Geib, K. M.; Shin, J.; Iyer, R.; Lile, D. L.; Pouch, J. J. The sulfurized InP surface. J. Vac. Sci. Technol. B, 1989, 7, 851–853.CrossRefGoogle Scholar
  20. [20]
    Yao, M. Q.; Madaria, A. R.; Chi, C. Y.; Huang, N. F.; Lin, C. X.; Povinelli, M. L.; Dapkus, P. D.; Zhou, C. W. Scalable synthesis of vertically aligned, catalyst-free gallium arsenide nanowire arrays: Towards optimized optical absorption. In Proc. SPIE 8373, Micro- and Nanotechnology Sensors, Systems, and Applications IV, Baltimore, Maryland, USA, 2012, pp 837314.CrossRefGoogle Scholar
  21. [21]
    Sheldon, M. T.; Carissa, N. E.; Harry, A. A. GaAs passivation with trioctylphosphine sulfide for enhanced solar cell efficiency and durability. Adv. Energy Mater. 2012, 2, 339–344.CrossRefGoogle Scholar
  22. [22]
    Demichel, O.; Heiss, M.; Bleuse, J.; Mariette, H.; i Morral, A. F. Impact of surfaces on the optical properties of GaAs nanowires. Appl. Phys. Lett. 2010, 97, 201907.CrossRefGoogle Scholar
  23. [23]
    Perera, S.; Fickenscher, M. A.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zhang, X.; Zou, J. Nearly intrinsic exciton lifetimes in single twin-free GaAs/AlGaAs core-shell nanowire heterostructures. Appl. Phys. Lett. 2008, 93, 053110.CrossRefGoogle Scholar
  24. [24]
    Alarcón-Lladó, E.; Mayer, M. A.; Boudouris, B. W.; Segalman, R. A.; Miller, N.; Yamaguchi, T.; Wang, K.; Nanishi, Y.; Haller, E. E.; Ager, J. W. PN junction rectification in electrolyte gated Mg-doped InN. Appl. Phys. Lett. 2011, 99, 102106.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shermin Arab
    • 1
  • P. Duke Anderson
    • 1
  • Maoqing Yao
    • 1
  • Chongwu Zhou
    • 1
    • 3
  • P. Daniel Dapkus
    • 1
    • 2
    • 3
  • Michelle L. Povinelli
    • 1
  • Stephen B. Cronin
    • 1
    • 2
  1. 1.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of PhysicsUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations