Advertisement

Nano Research

, Volume 7, Issue 8, pp 1128–1136 | Cite as

SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance

  • Won-Sik Kim
  • Yoon Hwa
  • Hong-Chan Kim
  • Jong-Hyun Choi
  • Hun-Joon Sohn
  • Seong-Hyeon HongEmail author
Research Article

Abstract

SnO2@Co3O4 hollow nano-spheres have been prepared using the template-based sol-gel coating technique and their electrochemical performance as an anode for lithium-ion battery (LIB) was investigated. The size of synthesized hollow spheres was about 50 nm with the shell thickness of 7–8 nm. The fabricated SnO2@Co3O4 hollow nano-sphere electrode exhibited an extraordinary reversible capacity (962 mAh·g−1 after 100 cycles at 100 mA·g−1), good cyclability, and high rate capability, which was attributed to the Co-enhanced reversibility of the Li2O reduction reaction during cycling.

Keywords

hollow sphere lithium-ion battery anode SnO2 Co3O4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_475_MOESM1_ESM.pdf (2.9 mb)
Supplementary material, approximately 2.94 MB.

References

  1. [1]
    Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Recent development of carbon materials for Li ion batteries. Carbon 2000, 38, 183–197.CrossRefGoogle Scholar
  2. [2]
    Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763.CrossRefGoogle Scholar
  3. [3]
    Boukamp, B. A.; Lesh, G. C.; Huggins, R. A. All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 1981, 128, 725–729.CrossRefGoogle Scholar
  4. [4]
    Winter, M.; Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1999, 45, 31–50.CrossRefGoogle Scholar
  5. [5]
    Chang, W.-S.; Park, C.-M.; Kim, J.-H.; Kim, Y.-U.; Jeong, G.; Sohn, H.-J. Quartz (SiO2): A new energy storage anode material for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6895–6899.CrossRefGoogle Scholar
  6. [6]
    Courtney, I. A.; Dahn, J. R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 1997, 144, 2045–2052.CrossRefGoogle Scholar
  7. [7]
    Chen, J. S.; Lou, X. W. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small 2013, 9, 1877–1893.CrossRefGoogle Scholar
  8. [8]
    Kim, C.; Noh, M.; Choi, M.; Cho, J.; Park, B. Critical size of a nano SnO2 electrode for Li-secondary battery. Chem. Mater. 2005, 17, 3297–3301.CrossRefGoogle Scholar
  9. [9]
    Ye, J.; Zhang, H.; Yang, R.; Li, X.; Qi, L. Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 2010, 6, 296–306.CrossRefGoogle Scholar
  10. [10]
    Kim, W.-S.; Lee, B.-S.; Kim, D.-H.; Kim, H.-C.; Yu, W.-R.; Hong, S.-H. SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology 2010, 21, 245605.CrossRefGoogle Scholar
  11. [11]
    Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.CrossRefGoogle Scholar
  12. [12]
    Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.CrossRefGoogle Scholar
  13. [13]
    Hong, Y. J.; Son, M. Y.; Kang, Y. C. One-pot facile synthesis of double-shelled SnO2 yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv. Mater. 2013, 25, 2279–2283.CrossRefGoogle Scholar
  14. [14]
    Yang, S.; Yue, W.; Zhu, J.; Ren, Y.; Yang, X. Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion natteries. Adv. Funct. Mater. 2013, 23, 3570–3576.CrossRefGoogle Scholar
  15. [15]
    Han, S.; Jang, B.; Kim, T.; Oh, S. M.; Hyeon, T. Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv. Funct. Mater. 2005, 15, 1845–1850.CrossRefGoogle Scholar
  16. [16]
    Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer. L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325–2329.CrossRefGoogle Scholar
  17. [17]
    Kim, W.-S.; Hwa, Y.; Jeun, J.-H.; Sohn, H.-J.; Hong, S.-H. Synthesis of SnO2 nano hollow spheres and their size effects in lithium ion battery anode application. J. Power Sources 2013, 225, 108–112.CrossRefGoogle Scholar
  18. [18]
    Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.CrossRefGoogle Scholar
  19. [19]
    Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.CrossRefGoogle Scholar
  20. [20]
    Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J.-M. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 2002, 149, A627–A634.CrossRefGoogle Scholar
  21. [21]
    Kang, Y.-M.; Song, M.-S.; Kim, J.-H.; Kim, H.-S.; Park, M.-S.; Lee, J.-Y.; Liu, H. K.; Dou, S. X. A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery. Electrochim. Acta 2005, 50, 3667–3673.Google Scholar
  22. [22]
    Qi, Y.; Du, N.; Zhang, H.; Fan, X.; Yang, Y.; Yang, D. CoO/NiSix core-shell nanowire arrays as lithium-ion anodes with high rate capabilities. Nanoscale 2012, 4, 991–996.Google Scholar
  23. [23]
    Wu, Z.-S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H.-M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.CrossRefGoogle Scholar
  24. [24]
    Qi, Y.; Du, N.; Zhang, H.; Wang, J.; Yang, Y.; Yang, D. Nanostructured hybrid cobalt oxide/copper electrodes of lithium-ion batteries with reversible high-rate capabilities. J. Alloys Compd. 2012, 521, 83–89.CrossRefGoogle Scholar
  25. [25]
    Wang, Y.; Xia, H.; Lu, L.; Lin, J. Y. Excellent performance in lithium-ion battery anodes: Rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 2010, 4, 1425–1432.CrossRefGoogle Scholar
  26. [26]
    Chen, J. S.; Li, C. M.; Zhou, W. W.; Yan, Q. Y.; Archer, L. A.; Lou, X. W. One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties. Nanoscale 2009, 1, 280–285.CrossRefGoogle Scholar
  27. [27]
    Wang, G.; Gao, X. P.; Shen, P. W. Hydrothermal synthesis of Co2SnO4 nanocrystals as anode materials for Li-ion batteries. J. Power Sources 2009, 192, 719–723.CrossRefGoogle Scholar
  28. [28]
    Xing, L.-L.; Zhao, Y.-Y.; Zhao, J.; Nie, Y.-X.; Deng, P.; Wang, Q.; Xue, X.-Y. Facile synthesis and lithium storage performance of SnO2-Co3O4 core-shell nanoneedle arrays on copper foil. J. Alloys Compd. 2014, 586, 28–33.CrossRefGoogle Scholar
  29. [29]
    Qi, Y.; Zhang, H.; Du, N.; Zhai, C.; Yang, D. Synthesis of Co3O4@SnO2@C core-shell nanorods with superior reversible lithium-ion storage. RSC Adv. 2012, 2, 9511–9516.CrossRefGoogle Scholar
  30. [30]
    Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci. 1968, 26, 62–69.CrossRefGoogle Scholar
  31. [31]
    Lou, X. W.; Yuan, C.; Archer, L. A. Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: Cavity size tuning and functionalization. Small 2007, 3, 261–265.CrossRefGoogle Scholar
  32. [32]
    Plank, N. O. V.; Snaith, H. J.; Ducati, C.; Bendall, J. S.; Schmidt-Mende, L.; Welland, M. E. A simple low temperature synthesis route for ZnO-MgO core-shell nanowires. Nanotechnology 2008, 19, 465603.CrossRefGoogle Scholar
  33. [33]
    Qi, G.; Liu, Y.; Jiao, W.; Zhang, L. Template synthesis of β-Ni(OH)2 hollow microspheres through a hydrothermal process. Micro Nano Lett. 2010, 5, 278–281.CrossRefGoogle Scholar
  34. [34]
    Qiu, Y.; Yu, J. Synthesis of titanium dioxide nanotubes from electrospun fiber templates. Solid State Commun. 2008, 148, 556–558.CrossRefGoogle Scholar
  35. [35]
    Yim, S. D.; Kim, S. J.; Baik, J. H.; Nam, I.-S.; Mok, Y. S.; Lee, J.-H.; Cho, B. K.; Oh, S. H. Decomposition of urea into NH3 for the SCR process. Ind. Eng. Chem. Res. 2004, 43, 4856–4863.CrossRefGoogle Scholar
  36. [36]
    Ye, Q.-L.; Yoshikawa, H.; Awaga, K. Magnetic and optical properties of submicron-size hollow spheres. Materials 2010, 3, 1244–1268.CrossRefGoogle Scholar
  37. [37]
    Liu, Z.; Ma, R.; Osada, M.; Takada, K.; Sasaki, T. Selective and controlled synthesis of α- and β-cobalt hydroxides in highly developed hexagonal platelets. J. Am. Chem. Soc. 2005, 127, 13869–13874.CrossRefGoogle Scholar
  38. [38]
    Carson, G. A.; Nassir, M. H.; Langell, M. A. Epitaxial growth of Co3O4 on CoO(100). J. Vac. Sci. Technol. A 1996, 14, 1637–1642.CrossRefGoogle Scholar
  39. [39]
    Burriel, M.; Garcia, G.; Santiso, J.; Abrutis, A.; Saltyte, Z.; Figueras, A. Growth kinetics, composition, and morphology of Co3O4 thin films prepared by pulsed liquid-injection MOCVD. Chem. Vapor Depos. 2005, 11, 106–111.CrossRefGoogle Scholar
  40. [40]
    Kim, D. H.; Kwon, J.-H.; Kim, M.; Hong, S.-H. Structural characteristics of epitaxial SnO2 films deposited on a- and m-cut sapphire by ALD. J. Crystal Growth 2011, 322, 33–37.CrossRefGoogle Scholar
  41. [41]
    Lian, P.; Zhu, X.; Liang, S.; Li, Z.; Yang, W.; Wang, H. High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim. Acta 2011, 56, 4532–4539.CrossRefGoogle Scholar
  42. [42]
    Lou, X. W.; Chen, J. S.; Chen, P.; L. Archer, A. One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chem. Mater. 2009, 21, 2868–2874.CrossRefGoogle Scholar
  43. [43]
    Hwa, Y.; Kim, W.-S.; Yu, B.-C.; Kim, H.; Hong, S.-H.; Sohn, H.-J. Reversible storage of Li-ion in nano-Si/SnO2 core-shell nanostructured electrode. J. Mater. Chem. A 2013, 1, 3733–3738.CrossRefGoogle Scholar
  44. [44]
    Kilibarda, G.; Szabó, D. V.; Schlabach, S.; Winkler, V.; Bruns, M.; Hanemann, T. Investigation of the degradation of SnO2 electrodes for use in Li-ion cells. J. Power Sources 2013, 233, 139–147.CrossRefGoogle Scholar
  45. [45]
    Larcher, D.; Sudant, G.; Leriche, J.-B.; Chabre, Y.; Tarascon, J.-M. The electrochemical reduction of Co3O4 in a lithium cell. J. Electrochem. Soc. 2002, 149, A234–A241.CrossRefGoogle Scholar
  46. [46]
    Aravindan, V.; Jinesh, K. B.; Prabhakar, R. R.; Kale, V. S.; Madhavi, S., Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries. Nano Energy 2013, 2, 720–725.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Won-Sik Kim
    • 1
  • Yoon Hwa
    • 1
  • Hong-Chan Kim
    • 1
  • Jong-Hyun Choi
    • 1
  • Hun-Joon Sohn
    • 1
  • Seong-Hyeon Hong
    • 1
    Email author
  1. 1.Department of Materials Science and Engineering and Research Institute of Advanced MaterialsSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations