Advertisement

Nano Research

, Volume 7, Issue 8, pp 1116–1127 | Cite as

Hierarchical porous metal ferrite ball-in-ball hollow spheres: General synthesis, formation mechanism, and high performance as anode materials for Li-ion batteries

  • Shouli Li
  • Aihua Li
  • Ranran Zhang
  • Yanyan He
  • Yanjun Zhai
  • Liqiang XuEmail author
Research Article

Abstract

High yields of CoFe2O4, NiFe2O4 and CdFe2O4 hierarchical porous ball-in-ball hollow spheres have been achieved using hydrothermal synthesis followed by calcination. The mechanism of formation is shown to involve an in situ carbonaceous-template process. Hierarchical porous CoFe2O4 hollow spheres with different numbers of shells can be obtained by altering the synthesis conditions. The electrochemical properties of the resulting CoFe2O4 electrodes have been compared, using different binders. The as-obtained CoFe2O4 and NiFe2O4 have relatively high reversible discharge capacity and good rate retention performance which make them promising materials for use as anode materials in lithium ion batteries.

Keywords

hierarchical porous ferrite lithium ion battery ball-in-ball 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_474_MOESM1_ESM.pdf (5.1 mb)
Supplementary material, approximately 5.10 MB.

References

  1. [1]
    Oh, M. H.; Yu, T.; Yu, S.-H.; Lim, B.; Ko, K.-T.; Willinger, M.-G.; Seo, D.-H.; Kim, B.-H.; Cho, M. G.; Parm, J.-H., et al. Galvanic replacement reactions in metal oxide nanocrystals. Science 2013, 340, 964–968.CrossRefGoogle Scholar
  2. [2]
    Cho, N.-H.; Cheong, T.-C.; Min, J. H.; Wu, J. H.; Lee, S. J.; Kim, D.; Yang, J.-S.; Kim, S.; Kim Y. K.; Seong, S.-Y. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 2011, 6, 675–681.CrossRefGoogle Scholar
  3. [3]
    Park, J.; Zheng, H. M.; Jun, Y.-W.; Alivisatos, A. P. Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc. 2009, 131, 13943–13945.CrossRefGoogle Scholar
  4. [4]
    Zhang, Q.; Wang, W. S.; Goebl, J.; Yin, Y. D. Self-templated synthesis of hollow nanostructures. Nano Today 2009, 4, 494–507.CrossRefGoogle Scholar
  5. [5]
    Pan, A. Q.; Wu, H. B.; Zhang, L.; Lou, X. W. Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 2013, 6, 1476–1479.CrossRefGoogle Scholar
  6. [6]
    Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.CrossRefGoogle Scholar
  7. [7]
    Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 2013, 52, 6417–6420.CrossRefGoogle Scholar
  8. [8]
    Lai, X. Y.; Halpert J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604–5618.CrossRefGoogle Scholar
  9. [9]
    Dong, Z. H.; Lai, X. Y.; Halpert, J. E.; Yang, N. L.; Yi, L. X.; Zhai, J.; Wang, D.; Tang, Z. Y.; Jiang, L. Accurate control of multishelled ZnO hollow microspheres for dyesensitized solar cells with high efficiency. Adv. Mater. 2012, 24, 1046–1049.CrossRefGoogle Scholar
  10. [10]
    Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.CrossRefGoogle Scholar
  11. [11]
    Son, M. Y.; Hong, Y. J.; Lee J.-K.; Kang, Y. C. One-pot synthesis of Fe2O3 yolk-shell particles with two, three, and four shells for application as an anode material in lithium-ion batteries. Nanoscale 2013, 5, 11592–11597.CrossRefGoogle Scholar
  12. [12]
    Li, Z. M.; Lai, X. Y.; Wang, H.; Mao, D. Xing, C. J.; Wang, D. General synthesis of homogeneous hollow core-shell ferrite microspheres. J. Phys. Chem. C 2009, 113, 2792–2797.CrossRefGoogle Scholar
  13. [13]
    Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609–4613.CrossRefGoogle Scholar
  14. [14]
    Lou, X. W.; Wang, Y.; Yuan, C. L.; Lee, J. Y.; Archer, L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325–2329.CrossRefGoogle Scholar
  15. [15]
    Li, Y.; Fu, Z.-Y.; Su, B.-L. Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 2012, 22, 4634–4667.CrossRefGoogle Scholar
  16. [16]
    Hu, J.; Chen, M.; Fang X. S.; Wu, L. M. Fabrication and application of inorganic hollow spheres. Chem. Soc. Rev. 2011, 40, 5472–5491.CrossRefGoogle Scholar
  17. [17]
    Song, Q.; Zhang, Z. J. Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture. J. Am. Chem. Soc. 2012, 134, 10182–10190.CrossRefGoogle Scholar
  18. [18]
    Li, J. F.; Wang, J. Z.; Liang, X; Zhang, Z. J.; Liu, H. K.; Qian, Y. T.; Xiong, S. L. Hollow MnCo2O4 submicrospheres with multilevel interiors: From mesoporous spheres to yolk-in-double-shell structures. ACS Appl. Mater. Interfaces 2014, 6, 24–30.CrossRefGoogle Scholar
  19. [19]
    Chu, Y.-Q.; Fu Z.-W.; Qin, Q.-Z. Cobalt ferrite thin films as anode material for lithium ion batteries. Electrochim. Acta 2004, 49, 4915–4921.CrossRefGoogle Scholar
  20. [20]
    Lavela, P.; Tirado, J. L. CoFe2O4 and NiFe2O4 synthesized by sol-gel procedures for their use as anode materials for Li ion batteries. J. Power Sources 2007, 172, 379–387.CrossRefGoogle Scholar
  21. [21]
    Wang, Y.; Su, D. W.; Ung, A.; Ahn J.-H.; Wang, G. X. Hollow CoFe2O4 nanospheres as a high capacity anode material for lithium ion batteries. Nanotechnology 2012, 23, 055402.CrossRefGoogle Scholar
  22. [22]
    Li, Z. H.; Zhao, T. P.; Zhan, X. Y.; Gao, D. S.; Xiao, Q. Z.; Lei, G. T. High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries. Electrochim. Acta 2010, 55, 4594–4598.CrossRefGoogle Scholar
  23. [23]
    Xia, H.; Zhu, D. D.; Fu, Y. S.; Wang, X. CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries, Electrochim. Acta 2012, 83, 166–174.CrossRefGoogle Scholar
  24. [24]
    Liu, S. Y.; Xie, J.; Fang, C. C.; Cao, G. S.; Zhu T. J.; Zhao, X. B. Self-assembly of a CoFe2O4/graphene sandwich by a controllable and general route: Towards a high-performance anode for Li-ion batteries. J. Mater. Chem. 2012, 22, 19738–19743.CrossRefGoogle Scholar
  25. [25]
    Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst. 2008, 41, 653–658.CrossRefGoogle Scholar
  26. [26]
    Wei, W.; Wang, Z. H.; Liu, Z.; Liu, Y.; He, L.; Chen, D. Z.; Umar, A.; Guo, L.; Li, J. H. Metal oxide hollow nanostructures: Fabrication and Li storage performance. J. Power Sources 2013, 238, 376–387.CrossRefGoogle Scholar
  27. [27]
    Wang, N. N.; Xu, H. Y.; Chen, L.; Gu, X.; Yang J.; Qian, Y. T. A general approach for MFe2O4 (M = Zn, Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries. J. Power Sources 2014, 247, 163–169.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shouli Li
    • 1
  • Aihua Li
    • 1
  • Ranran Zhang
    • 1
  • Yanyan He
    • 1
  • Yanjun Zhai
    • 1
  • Liqiang Xu
    • 1
    Email author
  1. 1.Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, and School of Chemistry and Chemical EngineeringShandong UniversityJinanChina

Personalised recommendations