Advertisement

Nano Research

, Volume 7, Issue 8, pp 1103–1115 | Cite as

Elevating mitochondrial reactive oxygen species by mitochondria-targeted inhibition of superoxide dismutase with a mesoporous silica nanocarrier for cancer therapy

  • Yi Zhang
  • Zhengyan Hu
  • Guiju Xu
  • Chuanzhou Gao
  • Ren’an WuEmail author
  • Hanfa ZouEmail author
Research Article

Abstract

In the intrinsic pathway of apoptosis, stresses of mitochondrial reactive oxygen species (mitoROS) might be sensed as more effective signals than those in cytosol, as mitochondria are the major sources of reactive oxygen species (ROS) and pivotal components during cell apoptosis. Mitochondrial superoxide dismutase (SOD2) takes the leading role in eliminating mitoROS, and inhibition of SOD2 might induce severe disturbances overwhelming the mitochondrial oxidative equilibrium, which would elevate the intracellular oxidative stresses and drive cells to death. Herein, we report a general strategy to kill cancer cells by targeted inhibition of SOD2 using 2-methoxyestradiol (2-ME, an inhibitor for the SOD family) via a robust mitochondria-targeted mesoporous silica nanocarrier (mtMSN), with the expected elevation of mitoROS and activation of apoptosis in HeLa cells. Fe3O4@MSN was employed in the mitochondria-targeted drug delivery and selective inhibition of mitochondrial enzymes, and was shown to be stable with good biocompatibility and high loading capacity. Due to the selective inhibition of SOD2 by 2-ME/mtMSN, enhanced elevation of mitoROS (132% of that with free 2-ME) was obtained, coupled with higher efficiency in initiating cell apoptosis (395% of that with free 2-ME in 4 h). Finally, the 2-ME/mtMSN exhibited powerful efficacy in targeted killing of HeLa cells by taking advantage of both biological recognition and magnetic guiding, causing 97.0% cell death with only 2 μg/mL 2-ME/mtMSN, hinting at its great potential in cancer therapy through manipulation of the delicate mitochondrial oxidative balance.

Keywords

mitochondria reactive oxygen species apoptosis mesoporous silica nanoparticles drug delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_473_MOESM1_ESM.pdf (2.5 mb)
Supplementary material, approximately 2.46 MB.

References

  1. [1]
    Sena, L. A.; Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 2012, 48, 158–167.CrossRefGoogle Scholar
  2. [2]
    Yang, Y.; Song, Y.; Loscalzo, J. Regulation of the protein disulfide proteome by mitochondria in mammalian cells. Proc. Natl. Acad. Sci. USA 2007, 104, 10813–10817.CrossRefGoogle Scholar
  3. [3]
    Hamanaka, R. B.; Chandel, N. S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 2010, 35, 505–513.CrossRefGoogle Scholar
  4. [4]
    Simon, H.-U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000, 5, 415–418.CrossRefGoogle Scholar
  5. [5]
    Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13.CrossRefGoogle Scholar
  6. [6]
    Wang, J.; Yi, J. Cancer cell killing via ROS: To increase or decrease, that is the question. Cancer Biol. Ther. 2008, 7, 1875–1884.CrossRefGoogle Scholar
  7. [7]
    Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579–591.CrossRefGoogle Scholar
  8. [8]
    Watson, J. Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol. 2013, 3, 120144.CrossRefGoogle Scholar
  9. [9]
    Qi, Y.; Tian, X.; Liu, J.; Han, Y.; Graham, A. M.; Simon, M. C.; Penninger, J. M.; Carmeliet, P.; Li, S. Bnip3 and AIF cooperate to induce apoptosis and cavitation during epithelial morphogenesis. J. Cell Biol. 2012, 198, 103–114.CrossRefGoogle Scholar
  10. [10]
    Scherz-Shouval, R.; Shvets, E.; Fass, E.; Shorer, H.; Gil, L.; Elazar, Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26, 1749–1760.CrossRefGoogle Scholar
  11. [11]
    Zorov, D. B.; Juhaszova, M.; Sollott, S. J. Mitochondrial ROS-induced ROS release: An update and review. BBA-Bioenergetics. 2006, 1757, 509–517.CrossRefGoogle Scholar
  12. [12]
    Miwa, S.; Brand, M. D. Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochem. Soc. Trans. 2003, 31, 1300–1301.CrossRefGoogle Scholar
  13. [13]
    Pelicano, H.; Feng, L.; Zhou, Y.; Carew, J. S.; Hileman, E. O.; Plunkett, W.; Keating, M. J.; Huang, P. Inhibition of mitochondrial respiration: A novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J. Biol. Chem. 2003, 278, 37832–37839.CrossRefGoogle Scholar
  14. [14]
    Kirshner, J. R.; He, S.; Balasubramanyam, V.; Kepros, J.; Yang, C.-Y.; Zhang, M.; Du, Z.; Barsoum, J.; Bertin, J. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol. Cancer Ther. 2008, 7, 2319–2327.CrossRefGoogle Scholar
  15. [15]
    Bragado, P.; Armesilla, A.; Silva, A.; Porras, A. Apoptosis by cisplatin requires p53 mediated p38α MAPK activation through ROS generation. Apoptosis 2007, 12, 1733–1742.CrossRefGoogle Scholar
  16. [16]
    Huang, P.; Feng, L.; Oldham, E. A.; Keating, M. J.; Plunkett, W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 2000, 407, 390–395.CrossRefGoogle Scholar
  17. [17]
    Zelko, I. N.; Mariani, T. J.; Folz, R. J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biol. Med. 2002, 33, 337–349.CrossRefGoogle Scholar
  18. [18]
    Kamata, H.; Honda, S.-i.; Maeda, S.; Chang, L. F.; Hirata, H.; Karin, M. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005, 120, 649–661.CrossRefGoogle Scholar
  19. [19]
    Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater. 2004, 16, 961–966.CrossRefGoogle Scholar
  20. [20]
    Paunesku, T.; Vogt, S.; Lai, B.; Maser, J.; Stojićević, N.; Thurn, K. T.; Osipo, C.; Liu, H.; Legnini, D.; Wang, Z. et al. Intracellular distribution of TiO2-DNA oligonucleotide nanoconjugates directed to nucleolus and mitochondria indicates sequence specificity. Nano Lett. 2007, 7, 596–601.CrossRefGoogle Scholar
  21. [21]
    Marrache, S.; Dhar, S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl. Acad. Sci. USA 2012, 109, 16288–16293.CrossRefGoogle Scholar
  22. [22]
    Wang, L. M.; Liu, Y.; Li, W.; Jiang, X. M.; Ji, Y. L.; Wu, X. C.; Xu, L. G.; Qiu, Y.; Zhao, K.; Wei, T. T. et al. Selective targeting of gold nanorods at the mitochondria of cancer cells: Implications for cancer therapy. Nano Lett. 2011, 11, 772–780.CrossRefGoogle Scholar
  23. [23]
    Boddapati, S. V.; D’Souza, G. G. M.; Erdogan, S.; Torchilin, V. P.; Weissig, V. Organelle-targeted nanocarriers: Specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett. 2008, 8, 2559–2563.CrossRefGoogle Scholar
  24. [24]
    Farokhzad, O. C.; Langer, R. L. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16–20.CrossRefGoogle Scholar
  25. [25]
    Cheng, H.; Kastrup, C. J.; Ramanathan, R.; Siegwart, D. J.; Ma, M. L.; Bogatyrev, S. R.; Xu, Q. B.; Whitehead, K. A.; Langer, R.; Anderson, D. G. Nanoparticulate cellular patches for cell-mediated tumoritropic delivery. ACS Nano 2010, 4, 625–631.CrossRefGoogle Scholar
  26. [26]
    Tarn, D.; Ashley, C. E.; Xue, M.; Carnes, E. C.; Zink, J. I.; Brinker, C. J. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Acc. Chem. Res. 2013, 46, 792–801.CrossRefGoogle Scholar
  27. [27]
    Pan, L. M.; He, Q. J.; Liu, J. N.; Chen, Y.; Ma, M.; Zhang, L. L.; Shi, J. L. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 2012, 134, 5722–5725.CrossRefGoogle Scholar
  28. [28]
    Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macro molecular therapeutics: A review. J. Control. Release 2000, 65, 271–284.CrossRefGoogle Scholar
  29. [29]
    Byrne, J. D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliver. Rev. 2008, 60, 1615–1626.CrossRefGoogle Scholar
  30. [30]
    Sun, C.; Lee, J. S. H.; Zhang, M. Q. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliver. Rev. 2008, 60, 1252–1265.CrossRefGoogle Scholar
  31. [31]
    Li, R. B.; Wu, R. A.; Zhao, L.; Hu, Z. Y.; Guo, S. J.; Pan, X. L.; Zou, H. F. Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells. Carbon 2011, 49, 1797–1805.CrossRefGoogle Scholar
  32. [32]
    Masters, J. R. Hela cells 50 years on: The good, the bad and the ugly. Nat. Rev. Cancer 2002, 2, 315–319.CrossRefGoogle Scholar
  33. [33]
    Tian, Y.; Yu, B. B.; Li, X.; Li, K. Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents. J. Mater. Chem. 2011, 21, 2476–2481.CrossRefGoogle Scholar
  34. [34]
    Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. 2008, 47, 8438–8441.CrossRefGoogle Scholar
  35. [35]
    Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S.-Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 2007, 17, 1225–1236.CrossRefGoogle Scholar
  36. [36]
    Hakem, R.; Hakem, A.; Duncan, G. S.; Henderson, J. T.; Woo, M.; Soengas, M. S.; Elia, A.; de la Pompa, J. L.; Kagi, D.; Khoo, W. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 1998, 94, 339–352.CrossRefGoogle Scholar
  37. [37]
    Sudimack, J.; Lee, R. J. Targeted drug delivery via the folate receptor. Adv. Drug Deliver. Rev. 2000, 41, 147–162.CrossRefGoogle Scholar
  38. [38]
    Veiseh, O.; Gunn, J. W.; Zhang, M. Q. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliver. Rev. 2010, 62, 284–304.CrossRefGoogle Scholar
  39. [39]
    Yang, X. Q.; Chen, Y. H.; Yuan, R. X.; Chen, G. H.; Blanco, E.; Gao, J. M.; Shuai, X. T. Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells. Polymer 2008, 49, 3477–3485.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Institute of Cancer Stem CellDalian Medical UniversityDalianChina

Personalised recommendations