Advertisement

Nano Research

, Volume 7, Issue 8, pp 1093–1102 | Cite as

Hollow spherical rare-earth-doped yttrium oxysulfate: A novel structure for upconversion

  • Gen Chen
  • Fashen Chen
  • Xiaohe LiuEmail author
  • Wei Ma
  • Hongmei Luo
  • Junhui LiEmail author
  • Renzhi Ma
  • Guanzhou Qiu
Research Article

Abstract

A facile biomolecule-assisted hydrothermal route followed by calcination has been employed for the preparation of monoclinic yttrium oxysulfate hollow spheres doped with other rare-earth ions (Yb3+ and Eu3+ or Er3+). The formation of hollow spheres may involve Ostwald ripening. The resulting hybrid materials were used for upconversion applications. The host crystal structure allows the easy co-doping of two different rare-earth metal ions without significantly changing the host lattice. The luminescent properties were affected by the ratio and concentration of dopant rare-earth metal ions due to energy transfer and the symmetry of the crystal field. The type of luminescent center and the crystallinity of samples were also shown to have a significant influence on the optical properties of the as-prepared products.

Keywords

Y2O2SO4 Hollow sphere Hydrothermal Ostwald ripening Upconversion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_472_MOESM1_ESM.pdf (1.3 mb)
Supplementary material, approximately 1.28 MB.

References

  1. [1]
    Wang, F.; Liu, X. G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989.CrossRefGoogle Scholar
  2. [2]
    Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 5808–5829.CrossRefGoogle Scholar
  3. [3]
    Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174.CrossRefGoogle Scholar
  4. [4]
    Mai, H.-X.; Zhang, Y.-W.; Si, R.; Yan, Z.-G.; Sun, L.-D.; You, L.-P.; Yan, C.-H. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128, 6426–6436.CrossRefGoogle Scholar
  5. [5]
    Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.CrossRefGoogle Scholar
  6. [6]
    Jiang, S.; Zhang, Y.; Lim, K. M.; Sim, E. K. W.; Ye, L. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology 2009, 20, 155101.CrossRefGoogle Scholar
  7. [7]
    Wang, M.; Mi, C.-C.; Wang, W.-X.; Liu, C.-H.; Wu, Y.-F.; Xu, Z.-R.; Mao, C.-B.; Xu, S.-K. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles. ACS Nano 2009, 3, 1580–1586.CrossRefGoogle Scholar
  8. [8]
    Wang, L. Y.; Yan, R. X.; Huo, Z. Y.; Wang, L.; Zeng, J. H.; Bao, J.; Wang, X.; Peng, Q.; Li, Y. D. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 6054–6057.CrossRefGoogle Scholar
  9. [9]
    Hilderbrand, S. A.; Shao, F. W.; Salthouse, C.; Mahmood, U.; Weissleder, R. Upconverting luminescent nanomaterials: Application to in vivo bioimaging. Chem. Commun. 2009, 28, 4188–4190.CrossRefGoogle Scholar
  10. [10]
    Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 2011, 10, 968–973.CrossRefGoogle Scholar
  11. [11]
    Yu, X. F.; Li, M.; Xie, M. Y.; Chen, L. D.; Li, Y.; Wang Q. Q. Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging. Nano Res. 2010, 3, 51–60.CrossRefGoogle Scholar
  12. [12]
    Xu, W.; Zhu, Y. S.; Chen, X.; Wang, J.; Tao, L.; Xu, S.; Liu, T.; Song, H. W. A novel strategy for improving upconversion luminescence of NaYF4:Yb,Er nanocrystals by coupling with hybrids of silver plasmon nanostructures and poly(methyl methacrylate) photonic crystals. Nano Res. 2013, 6, 795–807.CrossRefGoogle Scholar
  13. [13]
    Mahalingam, V.; Vetrone, F.; Naccache, R.; Speghini, A.; Capobianco, J. A. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: Multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv. Mater. 2009, 21, 4025–4028.CrossRefGoogle Scholar
  14. [14]
    Qu, Y. Q.; Kong, X. G.; Sun, Y. J.; Zeng, Q. H.; Zhang, H. Effect of excitation power density on the upconversion luminescence of LaF3:Yb3+,Er3+ nanocrystals. J. Alloys Compd. 2009, 485, 493–496.CrossRefGoogle Scholar
  15. [15]
    Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Li, R. F.; Luo, W. Q.; Chen, X. Y. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 2010, 22, 3266–3271.CrossRefGoogle Scholar
  16. [16]
    Machida, M.; Kawano, T.; Eto, M.; Zhang, D. J.; Ikeue, K. Ln dependence of the large-capacity oxygen storage/release property of Ln oxysulfate/oxysulfide systems. Chem. Mater. 2007, 19, 954–960.CrossRefGoogle Scholar
  17. [17]
    Zhang, D. J.; Yoshioka, F.; Ikeue, K.; Machida, M. Synthesis and oxygen release/storage properties of Ce-substituted La-oxysulfates, (La1−xCex)2O2SO4. Chem. Mater. 2008, 20, 6697–6703.CrossRefGoogle Scholar
  18. [18]
    Machida, M.; Kawamura, K.; Kawano, T.; Zhang, D. J.; Ikeue, K. Layered Pr-dodecyl sulfate mesophases as precursors of Pr2O2SO4 having a large oxygen-storage capacity. J. Mater. Chem. 2006, 16, 3084–3090.CrossRefGoogle Scholar
  19. [19]
    Kim, S. W.; Masui, T.; Imanaka, N. Synthesis of red-emitting phosphors based on gadolinium oxysulfate by a flux method. Electrochem. 2009, 77, 611–613.CrossRefGoogle Scholar
  20. [20]
    Kijima, T.; Shinbori, T.; Sekita, M.; Uota, M.; Sakai, G. Abnormally enhanced Eu3+ emission in Y2O2SO4:Eu3+ inherited from their precursory dodecylsulfate-templated concentric-layered nanostructure. J. Lumin. 2008, 128, 311–316.CrossRefGoogle Scholar
  21. [21]
    Kijima, T.; Isayama, T.; Sekita, M.; Uota, M.; Sakai, G. Emission properties of Tb3+ in Y2O2SO4 derived from their precursory dodecylsulfate-templated concentric- and straight-layered nanostructures. J. Alloys Compd. 2009, 485, 730–733.CrossRefGoogle Scholar
  22. [22]
    Hülsing, H.; Kahle, H. G.; Kasten, A. A microscopic model describing the spin-flip processes at the first-order antiferromagnetic-to-ferrimagnetic phase transition in Dy2O2SO4. J. Magn. Magn. Mater. 1983, 31, 1073–1074.CrossRefGoogle Scholar
  23. [23]
    Liang, J. B.; Ma, R. Z.; Geng, F. X.; Ebina, Y.; Sasaki, T. Ln2(OH)4SO4·nH2O (Ln = Pr to Tb; n ∼ 2): A new family of layered rare-earth hydroxides rigidly pillared by sulfate ions. Chem. Mater. 2010, 22, 6001–6007.CrossRefGoogle Scholar
  24. [24]
    Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.CrossRefGoogle Scholar
  25. [25]
    Machida, M.; Kawamura, K.; Ito, K.; Ikeue, K. Large-capacity oxygen storage by lanthanide oxysulfate/oxysulfide systems. Chem. Mater. 2005, 17, 1487–1492.CrossRefGoogle Scholar
  26. [26]
    Liu, X. H.; Zhang, D.; Jiang, J. H.; Zhang, N.; Ma, R. Z.; Zeng, H. B.; Jia, B. P.; Zhang, S. B.; Qiu, G. Z. General synthetic strategy for high-yield and uniform rare-earth oxysulfate (RE2O2SO4, RE = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, Ho, and Yb) hollow spheres. RSC Adv. 2012, 2, 9362–9365.CrossRefGoogle Scholar
  27. [27]
    Chen, G.; Ma, W.; Liu, X. H.; Liang, S. Q.; Qiu, G. Z.; Ma, R. Z. Controlled fabrication and optical properties of uniform CeO2 hollow spheres. RSC Adv. 2013, 3, 3544–3547.CrossRefGoogle Scholar
  28. [28]
    Ma, W.; Guo, Y. F.; Liu, X. H.; Zhang, D.; Liu, T.; Ma, R. Z.; Zhou, K. C.; Qiu, G. Z. Nickel dichalcogenide hollow spheres: Controllable fabrication, structural modification, and magnetic properties. Chem. Eur. J. 2013, 19, 15467–15471.CrossRefGoogle Scholar
  29. [29]
    Lian, J. B.; Sun, X. D.; Li, X. D. Synthesis, characterization and photoluminescence properties of (Gd1−x,Eux)2O2SO4 sub-microphosphors by homogeneous precipitation method. Mater. Chem. Phys. 2011, 125, 479–484.CrossRefGoogle Scholar
  30. [30]
    Luwang, M. N.; Ningthoujam, R. S.; Jagannath; Srivastava S. K.; Vatsa, R. K. Effects of Ce3+ codoping and annealing on phase transformation and luminescence of Eu3+-doped YPO4 nanorods: D2O solvent effect. J. Am. Chem. Soc. 2010, 132, 2759–2768.CrossRefGoogle Scholar
  31. [31]
    Yan, R. X.; Sun, X. M.; Wang, X.; Peng, Q.; Li, Y. D. Crystal structures, anisotropic growth, and optical properties: Controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials. Chem. Eur. J. 2005, 11, 2183–2195.CrossRefGoogle Scholar
  32. [32]
    Lian, J. B.; Sun, X. D.; Liu, Z. G.; Yu, J. Y.; Li, X. D. Synthesis and optical properties of (Gd1−x,Eux)2O2SO4 nano-phosphors by a novel co-precipitation method. Mater. Res. Bull. 2009, 44, 1822–1827.CrossRefGoogle Scholar
  33. [33]
    Joubert, M. F. Photon avalanche upconversion in rare earth laser materials. Opt. Mater. 1999, 11, 181–203.CrossRefGoogle Scholar
  34. [34]
    Kurian, P. A.; Vijayan, C.; Sandeep, C. S. S.; Philip, R.; Sathiyamoorthy, K. Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix. Nanotechnology 2007, 18, 075708.CrossRefGoogle Scholar
  35. [35]
    Fan, B.; Chlique, C.; Merdrignac-Conanec, O.; Zhang, X. H.; Fan, X. P. Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%. J. Phys. Chem. C 2012, 116, 11652–11657.CrossRefGoogle Scholar
  36. [36]
    Li, G. G.; Shang, M. M.; Geng, D. L.; Yang, D. M.; Peng, C.; Cheng, Z. Y.; Lin, J. Multiform La2O3: Yb3+/Er3+/Tm3+ submicro-/microcrystals derived by hydrothermal process: Morphology control and tunable upconversion luminescence properties. CrystEngComm 2012, 14, 2100–2111.CrossRefGoogle Scholar
  37. [37]
    Li, Z. H.; Park, W.; Zorzetto, G.; Lemaire, J.-S.; Summers, C. J. Synthesis protocols for δ-doped NaYF4:Yb,Er. Chem. Mater. 2014, 26, 1770–1778.CrossRefGoogle Scholar
  38. [38]
    Shi, L. S.; Shen, Q. Y.; Qiu, Z. Z. Concentration-dependent upconversion emission in Er-doped and Er/Yb-codoped LiTaO3 polycrystals. J. Lumin. 2014, 148, 94–97.CrossRefGoogle Scholar
  39. [39]
    Guo, R. M.; Wang, B.; Wang, X. J.; Wang, L.; Jiang, L. J.; Zhou, Z. P. Suppression of second-order cooperative up-conversion in Er/Yb silicate glass. Opt. Mater. 2013, 35, 935–939.CrossRefGoogle Scholar
  40. [40]
    Martín, I. R.; Rodríguez, V. D.; Lavín, V.; Rodríguez-Mendoza, U. R. Transfer and back transfer processes in Yb3+-Er3+ codoped fluoroindate glasses. J. Appl. Phys. 1999, 86, 935–939.CrossRefGoogle Scholar
  41. [41]
    Vega-Durán, J. T.; Barbosa-García, O.; Diáz-Torres, L. A.; Meneses-Nava, M. A.; Sumida, D. S. Effects of energy back transfer on the luminescence of Yb and Er ions in YAG. Appl. Phys. Lett. 2000, 76, 2032–2034.CrossRefGoogle Scholar
  42. [42]
    Volanti, D. P.; Rosa, I. L. V.; Paris, E. C.; Paskocimas, C. A.; Pizani, P. S.; Varela, J. A.; Longo, E. The role of the Eu3+ ions in structure and photoluminescence properties of SrBi2Nb2O9 powders. Opt. Mater. 2009, 31, 995–999.CrossRefGoogle Scholar
  43. [43]
    Fang, P. Y.; Fan, H. Q.; Li, J.; Liang, F. J. Lanthanum induced larger polarization and dielectric relaxation in Aurivillius phase SrBi2−xLaxNb2O9 ferroelectric ceramics. J. Appl. Phys. 2010, 107, 064104.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Inorganic Materials, School of Resources Processing and BioengineeringCentral South UniversityChangsha, HunanChina
  2. 2.Department of Chemical EngineeringNew Mexico State UniversityLas CrucesUSA
  3. 3.State Key Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electronical EngineeringCentral South UniversityChangsha, HunanChina
  4. 4.International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS)Tsukuba, IbarakiJapan

Personalised recommendations