Skip to main content

Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization

Abstract

There have been continuous efforts to seek novel functional two-dimensional semiconductors with high performance for future applications in nanoelectronics and optoelectronics. In this work, we introduce a successful experimental approach to fabricate monolayer phosphorene by mechanical cleavage and a subsequent Ar+ plasma thinning process. The thickness of phosphorene is unambiguously determined by optical contrast spectra combined with atomic force microscopy (AFM). Raman spectroscopy is used to characterize the pristine and plasma-treated samples. The Raman frequency of the A2g mode stiffens, and the intensity ratio of A2g to A1g modes shows a monotonic discrete increase with the decrease of phosphorene thickness down to a monolayer. All those phenomena can be used to identify the thickness of this novel two-dimensional semiconductor. This work on monolayer phosphorene fabrication and thickness determination will facilitate future research on phosphorene.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. [2]

    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  3. [3]

    Lin, Y.-M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H.-Y.; Grill, A.; Avouris, P. 100-GHz transistors from wafer-scale epitaxial graphene. Science 2010, 327, 662–662.

    Article  Google Scholar 

  4. [4]

    Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  Google Scholar 

  5. [5]

    Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

    Article  Google Scholar 

  6. [6]

    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  7. [7]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  Google Scholar 

  8. [8]

    Mak, K. F.; Lee, C. G.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  9. [9]

    Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934–9938.

    Article  Google Scholar 

  10. [10]

    Wang, H.; Yu, L. L.; Lee, Y.-H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L.-J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

    Article  Google Scholar 

  11. [11]

    Zhu, W. J.; Low, T.; Lee, Y.-H.; Wang, H.; Farmer, D. B.; Kong, J.; Xia, F. N.; Avouris, P. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 2014, 5, 3087.

    Google Scholar 

  12. [12]

    Morita, A. Semiconducting black phosphorus. Appl. Phys. A 1986, 39, 227–242.

    Article  Google Scholar 

  13. [13]

    Takahashi, T.; Tokailin, H.; Suzuki, S.; Sagawa, T.; Shirotani, I. Electronic band structure of black phosphorus studied by angle-resolved ultraviolet photoelectron spectroscopy. J. Phys. C: Solid State Phys. 1985, 18, 825.

    Article  Google Scholar 

  14. [14]

    Li, L. K.; Yu, Y. J.; Ye, G. J.; Chen, X. H.; Zhang, Y. B. Electronic properties of few-layer black phosphorus. In APS March Meeting Abstracts, Baltimore, Maryland, 2013, pp 6013.

    Google Scholar 

  15. [15]

    Liu, Y. L.; Nan, H. Y.; Wu, X.; Pan, W.; Wang, W. H.; Bai, J.; Zhao, W. W.; Sun, L. T.; Wang, X. R.; Ni, Z. H. Layer-by-layer thinning of MoS2 by plasma. ACS Nano 2013, 7, 4202–4209.

    Article  Google Scholar 

  16. [16]

    Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.; Steele, G. A. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187–3192.

    Article  Google Scholar 

  17. [17]

    Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763.

    Article  Google Scholar 

  18. [18]

    Mak, K. F.; Sfeir, M. Y.; Wu, Y.; Lui, C. H.; Misewich, J. A.; Heinz, T. F. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 2008, 101, 196405.

    Article  Google Scholar 

  19. [19]

    Sugai, S.; Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 1985, 53, 753–755.

    Article  Google Scholar 

  20. [20]

    Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

    Article  Google Scholar 

  21. [21]

    Lee, C. G.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  Google Scholar 

  22. [22]

    Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.; Christensen, N. E.; Svane, A. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B 2012, 86, 035105.

    Article  Google Scholar 

  23. [23]

    Sugai, S.; Ueda, T.; Murase, K. Pressure dependence of the lattice vibration in the orthorhombic and rhombohedral structures of black phosphorus. J. Phys. Soc. Jpn. 1981, 50, 3356–3361.

    Article  Google Scholar 

  24. [24]

    Qiao, J. S.; Kong, X. H.; Hu, Z.-X.; Yang, F.; Ji, W. Few-layer black phosphorus: Emerging 2D semiconductor with high carrier mobility and linear dichroism. arXiv preprint, 2014, arXiv:1401.5045.

    Google Scholar 

  25. [25]

    Wang, Y. Y.; Ni, Z. H.; Shen, Z. X.; Wang, H. M.; Wu, Y. H. Interference enhancement of Raman signal of graphene. Appl. Phys. Lett. 2008, 92, 043121.

    Article  Google Scholar 

  26. [26]

    Koh, Y. K.; Bae, M.-H.; Cahill, D. G.; Pop, E. Reliably counting atomic planes of few-layer graphene (n > 4). ACS Nano 2010, 5, 269–274.

    Article  Google Scholar 

  27. [27]

    Takao, Y.; Asahina, H.; Morita, A. Electronic structure of black phosphorus in tight binding approach. J. Phys. Soc. Jpn. 1981, 50, 3362–3369.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhenhua Ni or Chuanhong Jin.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Nan, H., Hong, J. et al. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853–859 (2014). https://doi.org/10.1007/s12274-014-0446-7

Download citation

Keywords

  • Mechanical cleavage
  • monolayer phosphorene
  • two-dimensional semiconductor
  • plasma thinning
  • optical contrast
  • Raman spectroscopy