Skip to main content
Log in

Single step fabrication of N-doped graphene/Si3N4/SiC heterostructures

Nano Research Aims and scope Submit manuscript

Cite this article

Abstract

In-plane heteroatom substitution of graphene is a promising strategy to modify its properties. The ability to dope graphene with electron-donor nitrogen heteroatoms is highly important for modulating electrical properties of graphene. Here we demonstrate a transfer-free method to directly grow large area quasi free-standing N-doped graphene bilayers on an insulating substrate (Si3N4). Electron-bombardment heating under nitrogen flux results in simultaneous growth of N-doped graphene and a Si3N4 layer on the SiC surface. The decoupling of N-doped graphene from the substrate and the presence of Si3N4 are identified by X-ray photoemission spectroscopy and low-energy electron diffraction. The substitution of nitrogen atoms in the graphene planes was confirmed using high resolution X-ray photoemission spectroscopy which reveals several atomic configurations for the nitrogen atoms: Graphitic-like, pyridine-like, and pyrroliclike. Furthermore, we demonstrated for the first time that N-doped graphene could be used to efficiently probe oxygen molecules via nitrogen atom defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N., et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.

    Article  Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  Google Scholar 

  3. Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

    Article  Google Scholar 

  4. Dlubak, B.; Martin, M.-B.; Deranlot, C.; Servet, B.; Xavier, S.; Mattana, R.; Sprinkle, M.; Berger, C.; De Heer, W. A.; Petroff, F., et al. Highly efficient spin transport in epitaxial graphene on SiC. Nat. Phys. 2012, 8, 557–561.

    Article  Google Scholar 

  5. Pedersen, T.; Flindt, C.; Pedersen, J.; Mortensen, N.; Jauho, A. P.; Pedersen, K. Graphene antidot lattices: Designed defects and spin qubits. Phys. Rev. Lett. 2008, 100, 136804.

    Article  Google Scholar 

  6. Zeng, M.; Shen, L.; Zhou, M.; Zhang, C.; Feng, Y. Graphene-based bipolar spin diode and spin transistor: Rectification and amplification of spin-polarized current. Phys. Rev. B 2011, 83, 115427.

    Article  Google Scholar 

  7. Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N., et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

    Article  Google Scholar 

  8. Ouerghi, A.; Silly, M. G.; Marangolo, M.; Mathieu, C.; Eddrief, M.; Picher, M.; Sirotti, F.; El Moussaoui, S.; Belkhou, R. Large-area and high-quality epitaxial graphene on off-axis SiC wafers. ACS Nano 2012, 6, 6075–6082.

    Article  Google Scholar 

  9. Varchon, F.; Feng, R.; Hass, J.; Li, X.; Nguyen, B.; Naud, C.; Mallet, P.; Veuillen, J. Y.; Berger, C.; Conrad, E., et al. Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 2007, 99, 126805.

    Article  Google Scholar 

  10. Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.

    Article  Google Scholar 

  11. Virojanadara, C.; Watcharinyanon, S.; Zakharov, A. A.; Johansson, L. I. Epitaxial graphene on 6H-SiC and Li intercalation. Phys. Rev. B 2010, 82, 205402.

    Article  Google Scholar 

  12. Wong, S. L.; Huang, H.; Wang, Y.; Cao, L.; Qi, D.; Santoso, I.; Chen, W.; Wee, A. T. S. Quasi-free-standing epitaxial graphene on SiC (0001) by fluorine intercalation from a molecular source. ACS Nano 2011, 5, 7662–7668.

    Article  Google Scholar 

  13. Wang, F.; Liu, G.; Rothwell, S.; Nevius, M.; Tejeda, A.; Taleb-Ibrahimi, A.; Feldman, L. C.; Cohen, P. I.; Conrad, E. H. Wide-gap semiconducting graphene from nitrogen-seeded SiC. Nano Lett. 2013, 13, 4827–4832.

    Article  Google Scholar 

  14. Pallecchi, E.; Ridene, M.; Kazazis, D.; Lafont, F.; Schopfer, F.; Poirier, W.; Goerbig, M. O.; Mailly, D.; Ouerghi, A. Insulating to relativistic quantum hall transition in disordered graphene. Sci. Rep. 2013, 3, 1791–1796.

    Article  Google Scholar 

  15. Martins, T.; Miwa, R.; da Silva, A.; Fazzio, A. Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 196803.

    Article  Google Scholar 

  16. Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 2009, 4726–4730.

    Google Scholar 

  17. Wang, Z.; Wei, M.; Jin, L.; Ning, Y.; Yu, L.; Fu, Q.; Bao, X. Simultaneous N-intercalation and N-doping of epitaxial graphene on 6H-SiC(0001) through thermal reactions with ammonia. Nano Res. 2013, 6, 399–408.

    Article  Google Scholar 

  18. Wang, L.; Sofer, Z.; Šimek, P.; Tomandl, I.; Pumera, M. Boron-doped graphene: Scalable and tunable P-type carrier concentration doping. J. Phys. Chem. C 2013, 117, 23251–23257.

    Article  Google Scholar 

  19. Poh, H. L.; Šimek, P.; Sofer, Z.; Pumera, M. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano 2013, 7, 5262–5272.

    Article  Google Scholar 

  20. Podila, R.; Chacón-Torres, J.; Spear, J. T.; Pichler, T.; Ayala, P.; Rao, A. M. Spectroscopic investigation of nitrogen doped graphene. Appl. Phys. Lett. 2012, 101, 123108.

    Article  Google Scholar 

  21. Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4, 6337–6342.

    Article  Google Scholar 

  22. Velez-Fort, E.; Mathieu, C.; Pallecchi, E.; Pigneur, M.; Silly, M. G.; Belkhou, R.; Marangolo, M.; Shukla, A.; Sirotti, F.; Ouerghi, A. Epitaxial graphene on 4H-SiC(0001) grown under nitrogen flux: Evidence of low nitrogen doping and high charge transfer. ACS Nano 2012, 6, 10893–10900.

    Google Scholar 

  23. Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.

    Article  Google Scholar 

  24. Li, N.; Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Large scale synthesis of N-doped multi-layered graphene sheets by simple crc-discharge method. Carbon 2010, 48, 255–259.

    Article  Google Scholar 

  25. Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.

    Article  Google Scholar 

  26. Giovannetti, G.; Khomyakov, P.; Brocks, G.; Kelly, P.; van den Brink, J. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B 2007, 76, 073103.

    Article  Google Scholar 

  27. Decker, R.; Wang, Y.; Brar, V. W.; Regan, W.; Tsai, H. Z.; Wu, Q.; Gannett, W.; Zettl, A.; Crommie, M. F. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 2011, 11, 2291–2295.

    Article  Google Scholar 

  28. Tromp, R.; Hannon, J. Thermodynamics and kinetics of graphene growth on SiC(0001). Phys. Rev. Lett. 2009, 102, 106104.

    Article  Google Scholar 

  29. Bergeard, N.; Silly, M. G.; Krizmancic, D.; Chauvet, C.; Guzzo, M.; Ricaud, J. P.; Izquierdo, M.; Stebel, L.; Pittana, P.; Sergo, R., et al. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure. J. Synchrotron Radiat. 2011, 18, 245–250.

    Article  Google Scholar 

  30. Mathieu, C.; Lalmi, B.; Menteş, T. O.; Pallecchi, E.; Locatelli, A.; Latil, S.; Belkhou, R.; Ouerghi, A. Effect of oxygen adsorption on the local properties of epitaxial graphene on SiC (0001). Phys. Rev. B 2012, 86, 035435.

    Article  Google Scholar 

  31. Varchon, F.; Mallet, P.; Veuillen, J. Y.; Magaud, L. Ripples in epitaxial graphene on the Si-terminated SiC(0001) surface. Phys. Rev. B 2008, 77, 235412.

    Article  Google Scholar 

  32. Velez-Fort, E.; Silly, M. G.; Belkhou, R.; Shukla, A.; Sirotti, F.; Ouerghi, A. Edge state in epitaxial nanographene on 3C-SiC(100)/Si(100) substrate. Appl. Phys. Lett. 2013, 103, 083101.

    Article  Google Scholar 

  33. Ni, Z.; Chen, W.; Fan, X.; Kuo, J.; Yu, T.; Wee, A.; Shen, Z. Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B 2008, 77, 115416.

    Article  Google Scholar 

  34. Cancado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhães-Paniago, R.; Pimenta, M. A. General equation for the determination of the crystallite size La of nanographite by raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106.

    Article  Google Scholar 

  35. Lv, R.; Li, Q.; Botello-Méndez, A. R.; Hayashi, T.; Wang, B.; Berkdemir, A.; Hao, Q.; Elías, A. L.; Cruz-Silva, R.; Gutiérrez, H. R., et al. Nitrogen-doped graphene: Beyond single substitution and enhanced molecular sensing. Sci. Rep. 2012, 2, 586.

    Article  Google Scholar 

  36. Oh, Y. S.; Cho, W. S.; Kim, C. S.; Lim, D. S.; Cheong, D. S. XPS investigation of Si3N4/SiC nanocomposites prepared using a commercial polymer. J. Am. Ceram. Soc. 1999, 82, 1076–1078.

    Article  Google Scholar 

  37. Yang, M.; Chai, J. W.; Wang, Y. Z.; Wang, S. J.; Feng, Y. P. Interfacial properties of silicon nitride grown on epitaxial graphene on 6H-SiC substrate. J. Phys. Chem. C 2012, 116, 22315–22318.

    Article  Google Scholar 

  38. Yang, M.; Zhang, C.; Wang, S.; Feng, Y.; Ariando. Graphene on B-Si3N4: An ideal system for graphene-based electronics. AIP Adv. 2011, 1, 032111.

    Article  Google Scholar 

  39. Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

    Article  Google Scholar 

  40. Dai, J.; Yuan, J. Adsorption of molecular oxygen on doped graphene: Atomic, electronic, and magnetic properties. Phys. Rev. B 2010, 81, 165414.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkarim Ouerghi.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vélez-Fort, E., Pallecchi, E., Silly, M.G. et al. Single step fabrication of N-doped graphene/Si3N4/SiC heterostructures. Nano Res. 7, 835–843 (2014). https://doi.org/10.1007/s12274-014-0444-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0444-9

Keywords

Navigation