Nano Research

, Volume 7, Issue 5, pp 755–764 | Cite as

Rapid, cost-effective DNA quantification via a visually-detectable aggregation of superparamagnetic silica-magnetite nanoparticles

  • Qian Liu
  • Jingyi Li
  • Hongxue Liu
  • Ibrahim Tora
  • Matthew S. Ide
  • Jiwei Lu
  • Robert J. Davis
  • David L. Green
  • James P. Landers
Research Article

Abstract

DNA and silica-coated magnetic particles entangle and form visible aggregates under chaotropic conditions with a rotating magnetic field, in a manner that enables quantification of DNA by image analysis. As a means of exploring the mechanism of this DNA quantitation assay, nanoscale SiO2-coated Fe3O4 (Fe3O4@SiO2) particles are synthesized via a solvothermal method. Characterization of the particles defines them to be ∼200 nm in diameter with a large surface area (141.89 m2/g), possessing superparamagnetic properties and exhibiting high saturation magnetization (38 emu/g). The synthesized Fe3O4@SiO2 nanoparticles are exploited in the DNA quantification assay and, as predicted, the nanoparticles provide better sensitivity than commercial microscale Dynabeads® for quantifying DNA, with a detection limit of 4 kilobase-pair fragments of human DNA. Their utility is proven using nanoparticle DNA quantification to guide efficient polymerase chain reaction (PCR) amplification of short tandem repeat loci for human identification.

Keywords

silica/magnetite core-shell superparamagnetic DNA quantification polymerase chain reaction (PCR) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_436_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 1.01 MB.

References

  1. [1]
    Penn, S. G.; He, L.; Natan, M. J. Nanoparticles for bioanalysis. Curr. Opin. Chem. Biol. 2003, 7, 609–615.CrossRefGoogle Scholar
  2. [2]
    Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167–R181.CrossRefGoogle Scholar
  3. [3]
    Willner, I.; Katz, E. Magnetic control of electrocatalytic and bioelectrocatalytic processes. Angew. Chem. Int. Ed. 2003, 42, 4576–4588.CrossRefGoogle Scholar
  4. [4]
    Xu, C. J.; Xu, K. M.; Gu, H. W.; Zhong, X. F.; Guo, Z. H.; Zheng, R. K.; Zhang, X. X.; Xu, B. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc. 2004, 126, 3392–3393.CrossRefGoogle Scholar
  5. [5]
    Perez, J. M.; O’Loughin, T.; Simeone, F. J.; Weissleder, R.; Josephson, L. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J. Am. Chem. Soc. 2002, 124, 2856–2857.CrossRefGoogle Scholar
  6. [6]
    Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110.CrossRefGoogle Scholar
  7. [7]
    Frey, N. A.; Peng, S.; Cheng, K.; Sun, S. H. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 2009, 38, 2532–2542.CrossRefGoogle Scholar
  8. [8]
    Huang, S.-H.; Juang, R.-S. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: A review. J. Nanopart. Res. 2011, 13, 4411–4430.CrossRefGoogle Scholar
  9. [9]
    Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021.CrossRefGoogle Scholar
  10. [10]
    Suh, S. K.; Yuet, K.; Hwang, D. K.; Bong, K. W.; Doyle, P. S.; Hatton, T. A. Synthesis of nonspherical superparamagnetic particles: In situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography. J. Am. Chem. Soc. 2012, 134, 7337–7343.CrossRefGoogle Scholar
  11. [11]
    Drmota, A.; Drofenik, M.; Koselj, J.; Žnidaršič, A. Microemulsion method for synthesis of magnetic oxide nanoparticles. In Microemulsions-An Introduction to Properties and Applications. Najjar, R., Ed.; InTech: Croatia, 2012; pp 191–214.Google Scholar
  12. [12]
    Okoli, C.; Sanchez-Dominguez, M.; Boutonnet, M.; Järås, S.; Civera, C.; Solans, C.; Kuttuva, G. R. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles. Langmuir 2012, 28, 8479–8485.CrossRefGoogle Scholar
  13. [13]
    Lee, J.; Lee, Y.; Youn, J. K.; Na, H. B.; Yu, T.; Kim, H.; Lee, S.-M.; Koo, Y.-M.; Kwak, J. H.; Park, H. G., et al. Simple synthesis of functionalized superparamagnetic magnetite/silic core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small 2008, 4, 143–152.CrossRefGoogle Scholar
  14. [14]
    Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782–2785.CrossRefGoogle Scholar
  15. [15]
    Cheng, C. M.; Wen, Y. H.; Xu, X. F.; Gu, H. C. Tunable synthesis of carboxyl-functionalized magnetite nanocrystal clusters with uniform size. J. Mater. Chem. 2009, 19, 8782–8788.CrossRefGoogle Scholar
  16. [16]
    Ge, J. P.; Hu, Y. X.; Biasini, M.; Beyermann, W. P.; Yin, Y. D. Superparamagnetic magnetite colloidal nanocrystal clusters with uniform size. Angew. Chem. Int. Ed. 2007, 46, 4342–4345.CrossRefGoogle Scholar
  17. [17]
    Si, S. F.; Li, C. H.; Wang, X.; Yu, D. P.; Peng, Q.; Li, Y. D. Magnetic monodisperse Fe3O4 nanoparticles. Cryst. Growth Des. 2005, 5, 391–393.CrossRefGoogle Scholar
  18. [18]
    Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.CrossRefGoogle Scholar
  19. [19]
    Jia, X.; Chen, D. R.; Jiao, X. L.; Zhai, S. M. Environmentally-friendly preparation of water-dispersible magnetite nanoparticles. Chem. Commun. 2009, 968–970.Google Scholar
  20. [20]
    Wang, J.; Yao, M.; Xu, G. J.; Cui, P.; Zhao, J. T. Synthesis of monodisperse nanocrystals of high crystallinity magnetite through solvothermal process. Mater. Chem. Phys. 2009, 113, 6–9.CrossRefGoogle Scholar
  21. [21]
    Beaven, G. H.; Holiday, E. R.; Johnson, E. A. Optical properties of nucleic acids and their components. In The Nucleic Acids. Volume 1. Chargaff, E., Davidson, J. N., Eds.; New York: Academic Press, 1955; pp 493–553.Google Scholar
  22. [22]
    Ahn S. J.; Costa, J.; Emanuel J. R. PicoGreen quantitation of DNA: Effective evaluation of samples pre- or post-PCR. Nucl. Acids Res., 1996, 24, 2623–2625.CrossRefGoogle Scholar
  23. [23]
    Sanchez J. L.; Storch, G. A. Multiplex, quantitative, real-time PCR assay for cytomegalovirus and human DNA. J. Clin. Microbiol. 2002, 40, 2381–2386.CrossRefGoogle Scholar
  24. [24]
    Leslie, D. C.; Li, J. Y.; Strachan, B. C.; Begley, M. R.; Finkler, D.; Bazydlo, L. A.; Barker, N. S.; Haverstick, D. M.; Utz, M.; Landers, J. P. New detection modality for label-free quantification of DNA in biological samples via superparamagnetic bead aggregation. J. Am. Chem. Soc. 2012, 134, 5689–5696.CrossRefGoogle Scholar
  25. [25]
    Li, J. Y.; Liu, Q.; Alsamarri, H.; Lounsbury, J. A.; Haversitick, D. M.; Landers, J. P. Label-free DNA quantification via a’ pipette, aggregate and blot’ (PAB) approach with magnetic silica particles on filter paper. Lab Chip 2013, 13, 955–961.CrossRefGoogle Scholar
  26. [26]
    Melzak, K. A.; Sherwood, C. S.; Turner, R. F. B.; Haynes, C. A. Driving forces for DNA adsorption to silica perchlorate solutions. J. Colloid. Interface Sci. 1996, 181, 635–644.CrossRefGoogle Scholar
  27. [27]
    Luger, K.; Mäder, A. W.; Richmond, R. K.; Sargent, D. F.; Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 1997, 389, 251–260.CrossRefGoogle Scholar
  28. [28]
    Rivetti, C.; Codeluppi, S. Accurate length determination of DNA molecules visualized by atomic force microscopy: Evidence for a partial B- to A-form transition on mica. Ultramicroscopy 2001, 87, 55–66.CrossRefGoogle Scholar
  29. [29]
    Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319.CrossRefGoogle Scholar
  30. [30]
    Dodson, M. H.; McClelland-Brown, E. Magnetic blocking temperatures of single-domain grains during slow cooling. J. Geophys. Res.: Solid Earth 1980, 85, 2625–2637.CrossRefGoogle Scholar
  31. [31]
    Andersen, J. Quantification of DNA by slot-blot analysis. MethodsMol. Biol. 1998, 98, 33–38.Google Scholar
  32. [32]
    Breadmore, M. C.; Wolfe, K. A.; Arcibal, I. G.; Leung, W. K.; Dickson, D.; Giordano, B. C.; Power, M. E.; Ferrance, J. P.; Feldman, S. H.; Norris, P. M., et al. Microchip-based purification of DNA from biological samples. Anal. Chem. 2003, 75, 1880–1886.CrossRefGoogle Scholar
  33. [33]
    Lounsbury, J. A.; Coult, N.; Miranian, D. C.; Cronk, S. M.; Haverstick, D. M.; Kinnon, P.; Saul, D. J.; Landers, J. P. An enzyme-based DNA preparation method for application to forensic biological samples and degraded. Forensic Sci. Int.: Genet. 2012, 6, 607–615.CrossRefGoogle Scholar
  34. [34]
    Golenberg, E. M.; Bickel, A.; Weihs, P. Effect of highly fragmented DNA on PCR. Nucl. Acids Res. 1996, 24, 5026–5033.CrossRefGoogle Scholar
  35. [35]
    Ginoza, W.; Zimm, B. H. Mechanisms of inactivation of deoxyribonucleic acids by heat. Proc. Natl. Acad. Sci. 1961, 47, 639–652.CrossRefGoogle Scholar
  36. [36]
    Lindahl, T.; Nyberg, B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry 1974, 13, 3405–3410.CrossRefGoogle Scholar
  37. [37]
    Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, Fu. Y.; Zhao, D. Y. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew. Chem. Int. Ed. 2009, 48, 5875–5879.CrossRefGoogle Scholar
  38. [38]
    Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28–29.CrossRefGoogle Scholar
  39. [39]
    Masters, J. R.; Thomson, J. A.; Daly-Burns, B.; Reid, Y. A.; Dirks, W. G.; Packer, P.; Toji, L. H.; Ohno, T.; Tanabe, H.; Arlett, C. F. et al. Short tandem repeat profiling provides an international reference standard for human cell lines. Proc. Natl. Acad. Sci. 2001, 98, 8012–8017.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Qian Liu
    • 1
    • 4
  • Jingyi Li
    • 1
    • 4
  • Hongxue Liu
    • 5
  • Ibrahim Tora
    • 1
  • Matthew S. Ide
    • 6
  • Jiwei Lu
    • 5
  • Robert J. Davis
    • 6
  • David L. Green
    • 6
  • James P. Landers
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of ChemistryUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of PathologyUniversity of Virginia Health Science CenterCharlottesvilleUSA
  3. 3.Department of Mechanical EngineeringUniversity of VirginiaCharlottesvilleUSA
  4. 4.Center for Microsystems for the Life SciencesUniversity of VirginiaCharlottesvilleUSA
  5. 5.Department of Materials Science & EngineeringUniversity of VirginiaCharlottesvilleUSA
  6. 6.Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations