Nano Research

, Volume 7, Issue 4, pp 443–452

Flexible thermocells for utilization of body heat

Research Article

Abstract

Plastic thermo-electrochemical cells (thermocells) involving aqueous potassium ferricyanide/ferrocyanide electrolyte have been investigated as an alternative to conventional thermoelectrics for thermal energy harvesting. Plastic thermocells that consist of all pliable materials such as polyethylene terephthalate (PET), fabrics, and wires are flexible enough to be wearable on the human body and to be wrapped around cylindrical shapes. The performance of the thermocells is enhanced by incorporating carbon nanotubes into activated carbon textiles, due to improved charge transfer at the interface. In cold weather conditions (a surrounding temperature of 5 °C), the thermocell generates a short-circuit current density of 0.39 A/m2 and maximum power density of 0.46 mW/m2 from body heat (temperature of 36 °C). For practical use, we have shown that the thermocell charges up a capacitor when worn on a T-shirt by a person. We also have demonstrated that the electrical energy generated from waste pipe heat using a serial array of the thermocells and voltage converters can power a typical commercial light emitting diode (LED).

Keywords

wearable thermocell body heat waste heat recovery carbon nanotubes activated carbon textile porous electrode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_410_MOESM1_ESM.pdf (670 kb)
Supplementary material, approximately 669 KB.

References

  1. [1]
    Qi, Y.; McAlpine, M. C. Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 2010, 3, 1275–1285.CrossRefGoogle Scholar
  2. [2]
    Hirai, T.; Shindo, K.; Ogata, T. Charge and discharge characteristics of thermochargeable galvanic cells with an [Fe(CN)6]4/[Fe(CN)6]3-redox couple. J. Electrochem. Soc. 1996, 143, 1305–1313.CrossRefGoogle Scholar
  3. [3]
    Vullers, R. J. M.; van Schaijk, R.; Doms, I.; Van Hoof, C.; Mertens, R. Micropower energy harvesting. Solid-State Electron. 2009, 53, 684–693.CrossRefGoogle Scholar
  4. [4]
    Leonov, V.; Torfs, T.; Fiorini, P.; Van Hoof, C. Thermoelectric converters of human warmth for self-powered wireless sensor nodes. IEEE Sens. J. 2007, 7, 650–657.CrossRefGoogle Scholar
  5. [5]
    Aydin, E. A.; Güler, I. Recent advances on body-heat powered medical devices. Recent Patents on Biomedical Engineering 2011, 4, 33–37.CrossRefGoogle Scholar
  6. [6]
    Snyder, G. J.; Lim, J. R.; Huang, C. K.; Fleurial, J. P. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2003, 2, 528–531.CrossRefGoogle Scholar
  7. [7]
    Weber, J.; Potje-Kamloth, K.; Haase, F.; Detemple, P.; Völklein, F.; Doll, T. Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sensor. Actuat. A-Phys. 2006, 132, 325–330.CrossRefGoogle Scholar
  8. [8]
    Kraemer, D.; Poudel, B.; Feng, H. P.; Caylor, J. C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X.; Wang, D.; Muto, A., et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532–538.CrossRefGoogle Scholar
  9. [9]
    Settaluri, K. T.; Lo, H. Y.; Ram, R. J. Thin thermoelectric generator system for body energy harvesting. J. Electron. Mater. 2012, 41, 984–988.CrossRefGoogle Scholar
  10. [10]
    Hewitt, C. A.; Kaiser, A. B.; Roth, S.; Craps, M.; Czerw, R.; Carroll, D. L. Multilayered carbon nanotube/polymer composite based thermoelectric fabrics. Nano Lett. 2012, 12, 1307–1310.CrossRefGoogle Scholar
  11. [11]
    Abraham, T. J.; MacFarlane, D. R.; Pringle, J. M. Seebeck coefficients in ionic liquids-prospects for thermo-electrochemical cells. Chem. Commun. 2011, 47, 6260–6262.CrossRefGoogle Scholar
  12. [12]
    Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.CrossRefGoogle Scholar
  13. [13]
    Vining, C. B. An inconvenient truth about thermoelectrics. Nat. Mater. 2009, 8, 83–85.CrossRefGoogle Scholar
  14. [14]
    Quickenden, T. I.; Vernon, C. F. Thermogalvanic conversion of heat to electricity. Sol. Energy 1986, 36, 63–72.CrossRefGoogle Scholar
  15. [15]
    Mua, Y.; Quickenden, T. I. Power conversion efficiency, electrode separation, and overpotential in the ferricyanide/ferrocyanide thermogalvanic cell. J. Electrochem. Soc. 1996, 143, 2558–2564.CrossRefGoogle Scholar
  16. [16]
    Hu, R.; Cola, B. A.; Haram, N.; Barisci, J. N.; Lee, S.; Stoughton, S.; Wallace, G.; Too, C.; Thomas, M.; Gestos, A., et al. Harvesting waste thermal energy using a carbonnanotube-based thermo-electrochemical cell. Nano Lett. 2010, 10, 838–846.CrossRefGoogle Scholar
  17. [17]
    Nightingale, E. R. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 1959, 63, 1381–1387.CrossRefGoogle Scholar
  18. [18]
    Burrows, B. Discharge behavior of redox thermogalvanic cells. J. Electrochem. Soc. 1976, 123, 154–159.CrossRefGoogle Scholar
  19. [19]
    Morais, E. A. D.; Alvial, G.; Longuinhos, R.; Figueiredo, J. M. A.; Lacerda, R. G.; Ferlauto, A. S.; Ladeira, L. O. Enhanced electrochemical activity using vertically aligned carbon nanotube electrodes grown on carbon fiber. Mater. Res. 2011, 14, 403–407.CrossRefGoogle Scholar
  20. [20]
    Kim, J. I.; Park, S. J. A study of ion charge transfer on electrochemical behaviors of poly(vinylidene fluoride)-derived carbon electrodes. J. Anal. Appl. Pyrol. 2012, 98, 22–28.CrossRefGoogle Scholar
  21. [21]
    Juan, Y.; Ke, Q. Preparation of activated carbon by chemical activation under vacuum. Environ. Sci. Technol. 2009, 43, 3385–3390.CrossRefGoogle Scholar
  22. [22]
    Babel, K.; Jurewicz, K. KOH activated carbon fabrics as supercapacitor material. J. Phys. Chem. Solids 2004, 65, 275–280.CrossRefGoogle Scholar
  23. [23]
    Bao, L.; Li, X. Towards textile energy storage from cotton T-shirts. Adv. Mater. 2012, 24, 3246–3252.CrossRefGoogle Scholar
  24. [24]
    Lota, G.; Fic, K.; Frackowiak, E. Carbon nanotubes and their composites in electrochemical applications. Energ. Environ. Sci. 2011, 4, 1592–1605.CrossRefGoogle Scholar
  25. [25]
    Kang, T. J.; Choi, A.; Kim, D. H.; Jin, K.; Seo, D. K.; Jeong, D. H.; Hong, S. H.; Park, Y. W.; Kim, Y. H. Electromechanical properties of CNT-coated cotton yarn for electronic textile applications. Smart Mater. Struct. 2011, 20, 015004.Google Scholar
  26. [26]
    Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. C. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys. Chem. Chem. Phys. 2011, 13, 17615–17624.CrossRefGoogle Scholar
  27. [27]
    Hu, L.; Pasta, M.; Mantia, F. L.; Cui, L.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714.CrossRefGoogle Scholar
  28. [28]
    Nugent, J. M.; Santhanam, K. S. V.; Rubio, A.; Ajayan, P. M. Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett. 2001, 1, 87–91.CrossRefGoogle Scholar
  29. [29]
    Saliba, R.; Agricole, B.; Mingotaud, C.; Ravaine, S. Voltammetric and impedance analysis of dimethyldioctadecylammonium/Prussian blue Langmuir-Blodgett films on ITO electrodes. J. Phys. Chem. B 1999, 103, 9712–9716.CrossRefGoogle Scholar
  30. [30]
    Xiao, Y.; Lin, J. Y.; Tai, S. Y.; Chou, S. W.; Yue, G.; Wu, J. Pulse electropolymerization of high performance PEDOT/ MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 19919–19925.CrossRefGoogle Scholar
  31. [31]
    Kang, T. J.; Fang, S. L.; Kozlov, M. E.; Haines, C. S.; Li, N.; Kim, Y. H.; Chen, Y. S.; Baughman, R. H. Electrical power from nanotube and graphene electrochemical thermal energy harvesters. Adv. Funct. Mater. 2012, 22, 477–489.CrossRefGoogle Scholar
  32. [32]
    Curtiss, C. F.; Bird, R. B. Multicomponent diffusion. Ind. Eng. Chem. Res. 1999, 38, 2515–2522.CrossRefGoogle Scholar
  33. [33]
    Eastman, E. D. Theory of the soret effect. J. Am. Chem. Soc. 1928, 50, 283–291.CrossRefGoogle Scholar
  34. [34]
    Eastman, E. D. Thermodynamics of non-isothermal systems. J. Am. Chem. Soc. 1926, 48, 1482–1493.CrossRefGoogle Scholar
  35. [35]
    deBethune, A. J.; Licht, T. S.; Swendeman, N. The temperature coefficients of electrode potentials: The isothermal and thermal coefficients-the standard ionic entropy of electrochemical transport of the hydrogen ion. J. Electrochem. Soc. 1959, 106, 616–625.CrossRefGoogle Scholar
  36. [36]
    Lu, X.; Xiao, Y.; Lei, Z.; Chen, J. Graphitized macroporous carbon microarray with hierarchical mesopores as host for the fabrication of electrochemical biosensor. Biosens. Bioelectron. 2009, 25, 244–247.CrossRefGoogle Scholar
  37. [37]
    Zhao, J.; Cheng, F.; Yi, C.; Liang, J.; Tao, Z.; Chen, J. Facile synthesis of hierarchically porous carbons and their application as a catalyst support for methanol oxidation. J. Mater. Chem. 2009, 19, 4108–4116.CrossRefGoogle Scholar
  38. [38]
    Wang, Z.; Kiesel, E. R.; Stein, A. Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity. J. Mater. Chem. 2008, 18, 2194–2200.CrossRefGoogle Scholar
  39. [39]
    Deng, Y.; Liu, C.; Yu, T.; Liu, F.; Zhang, F.; Wan, Y.; Zhang, L.; Wang, C.; Tu, B.; Webley, P. A., et al. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/bock copolymer template approach. Chem. Mater. 2007, 19, 3271–3277.CrossRefGoogle Scholar
  40. [40]
    Li, Y.; Fu, Z. Y.; Su, B. L. Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 2012, 22, 4634–4667.CrossRefGoogle Scholar
  41. [41]
    Romano, M. S.; Li, N.; Antiohos, D.; Razal, J. M.; Nattestad, A.; Beirne, S.; Fang, S.; Chen, Y.; Jalili, R.; Wallace, G. G., et al. Carbon nanotube-reduced graphene oxide composites for thermal energy harvesting applications. Adv. Mater. 2013, 25, 6602–6606.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hyeongwook Im
    • 1
  • Hyung Geun Moon
    • 2
  • Jeong Seok Lee
    • 1
  • In Young Chung
    • 2
  • Tae June Kang
    • 3
  • Yong Hyup Kim
    • 1
  1. 1.School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Electronics and Communications EngineeringKwangwook UniversitySeoulRepublic of Korea
  3. 3.Department of Nanofusion TechnologyPusan National UniversityBusanRepublic of Korea

Personalised recommendations