Skip to main content

Functionalized, carbon nanotube material for the catalytic degradation of organophosphate nerve agents

Abstract

Recent world events have emphasized the need to develop innovative, functional materials that will safely neutralize chemical warfare (CW) agents in situ to protect military personnel and civilians from dermal exposure. Here, we demonstrate the efficacy of a novel, proof-of-concept design for a Cu-containing catalyst, chemically bonded to a single-wall carbon nanotube (SWCNT) structural support, to effectively degrade an organophosphate simulant. SWCNTs have high tensile strength and are flexible and light-weight, which make them a desirable structural component for unique, fabric-like materials. This study aims to develop a self-decontaminating, carbon nanotube-derived material that can ultimately be incorporated into a wearable fabric or protective material to minimize dermal exposure to organophosphate nerve agents and to prevent accidental exposure during decontamination procedures. Carboxylated SWCNTs were functionalized with a polymer, which contained Cu-chelating bipyridine groups, and their catalytic activity against an organophosphate simulant was measured over time. The catalytically active, functionalized nanomaterial was characterized using X-ray fluorescence and Raman spectroscopy. Assuming zeroth-order reaction kinetics, the hydrolysis rate of the organophosphate simulant, as monitored by UV-vis absorption in the presence of the catalytically active nanomaterial, was 63 times faster than the uncatalyzed hydrolysis rate for a sample containing only carboxylated SWCNTs or a control sample containing no added nanotube materials.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Persian Gulf War Illness Task Force. Khamisiyah: A Historical Perspective on Related Intelligence [Online]. Persian Gulf War Illness Task Force; http://www.gulflink.osd.mil/cia_wp/ (accessed Aug 16, 2012).

  2. [2]

    Russell, A. J.; Berberich, J. A.; Drevon, G. F.; Koepsel, R. R. Biomaterials for mediation of chemical and biological warfare agents. Annu. Rev. Biomed. Eng. 2003, 5, 1–27.

    Article  Google Scholar 

  3. [3]

    Munro, N. B.; Watson, A. P.; Ambrose, K. R.; Griffin, G. D. Treating exposure to chemical warfare agents: Implications for health care providers and community emergency planning. Environ. Health Perspect. 1990, 89, 205–215.

    Article  Google Scholar 

  4. [4]

    Reutter, S. Hazards of chemical weapons release during war: New perspectives. Environ. Health Perspect. 1999, 107, 985–990.

    Article  Google Scholar 

  5. [5]

    Brown, M. A.; Brix, K. A. Review of health consequences from high-, intermediate- and low-level exposure to organophosphorus nerve agents. J. Appl. Toxicol. 1998, 18, 393–408.

    Article  Google Scholar 

  6. [6]

    Army Medical Department Center and School. Multiservice Tactics, Techniques, and Procedures for Treatment of Chemical Agent Casualties and Conventional Military Chemical Injuries. Departments of the Army, The Navy, and the Air Force and the Commandant of the Marine Corps: Fort Sam Houston, TX, 2007.

    Google Scholar 

  7. [7]

    Amitai, G.; Murata, H.; Andersen, J. D.; Koepsel, R. R.; Russell, A. J. Decontamination of chemical and biological warfare agents with a single multi-functional material. Biomaterials 2010, 31, 4417–4425.

    Article  Google Scholar 

  8. [8]

    Hight Walker, A. R.; Suenram, R. D.; Samuels, A.; Jensen, J.; Ellzy, M. W.; Lochner, J. M.; Zeroka, D. Rotational spectrum of Sarin. J. Mol. Spectrosc. 2001, 207, 77–82.

    Article  Google Scholar 

  9. [9]

    Erdem, M.; Say, R.; Ersöz, A.; Denizli, A.; Türk, H. Biomimicking, metal-chelating and surface-imprinted polymers for the degradation of pesticides. React. Funct. Polym. 2010, 70, 238–243.

    Article  Google Scholar 

  10. [10]

    Hartshorn, C. M.; Singh, A.; Chang, E. L. Metal-chelator polymers as organophosphate hydrolysis catalysts. J. Mater. Chem. 2002, 12, 602–605.

    Article  Google Scholar 

  11. [11]

    Wagner, G. W.; Bartram, P. W.; Koper, O.; Klabunde, K. J. Reactions of VX, GD, and HD with nanosize MgO. J. Phys. Chem. B 1999, 103, 3225–3228.

    Article  Google Scholar 

  12. [12]

    Wagner, G. W.; Koper, O. B.; Lucas, E.; Decker, S.; Klabunde, K. J. Reactions of VX, GD, and HD with nanosize CaO: Autocatalytic dehydrohalogenation of HD. J. Phys. Chem. B 2000, 104, 5118–5123.

    Article  Google Scholar 

  13. [13]

    Wagner, G. W.; Procell, L. R.; O’Connor, R. J.; Munavalli, S.; Carnes, C. L.; Kapoor, P. N.; Klabunde, K. J. Reactions of VX, GB, GD, and HD with nanosize Al2O3. Formation of aluminophosphonates. J. Am. Chem. Soc. 2001, 123, 1636–1644.

    Article  Google Scholar 

  14. [14]

    Badawi, A. M.; Hafiz, A. A.; Ibrahim, H. A. Catalytic destruction of malathion by metallornicelle layers. J. Surfactants Deterg. 2003, 6, 239–241.

    Article  Google Scholar 

  15. [15]

    Gill, I.; Ballesteros, A. Degradation of organophosphorous nerve agents by enzyme-polymer nanocomposites: Efficient biocatalytic materials for personal protection and large-scale detoxification. Biotechnol Bioeng 2000, 70, 400–410.

    Article  Google Scholar 

  16. [16]

    Popiel, S.; Nawala, J.; Sankowska, M.; Witkiewicz, Z.; Bernat, P. Enzymes as catalysts of decomposition of chemical warfare agents. Przem. Chem. 2010, 89, 1361–1369.

    Google Scholar 

  17. [17]

    Yang, F. X.; Wild, J. R.; Russell, A. J. Nonaqueous biocatalytic degradation of a nerve-gas mimic. Biotechnol. Prog. 1995, 11, 471–474.

    Article  Google Scholar 

  18. [18]

    Sharma, S. P.; Tomar, L. N. S.; Acharya, J.; Chaturvedi, A.; Suryanarayan, M. V. S.; Jain, R. Acetylcholinesterase inhibition-based biosensor for amperometric detection of Sarin using single-walled carbon nanotube-modified ferrule graphite electrode. Sens. Actuaters B-Chem. 2012, 166, 616–623.

    Article  Google Scholar 

  19. [19]

    Wei, Y.; Liu, Z. G.; Gao, C.; Wang, L.; Liu, J. H.; Huang, X. J. Electrochemical sensors and biosensors based on nanomaterials: A new approach for detection of organic micropollutants. Prog. Chem. 2012, 24, 616–627.

    Google Scholar 

  20. [20]

    Zeng, Y.; Yu, D.; Yu, Y.; Zhou, T.; Shi, G. Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes-poly(acrylamide) nanocomposite film modified electrode. J. Hazard. Mater. 2012, 217, 315–322.

    Article  Google Scholar 

  21. [21]

    Sharma, P. K.; Gupta, G.; Nigam, A. K.; Pandey, P.; Boopathi, M.; Ganesan, K.; Singh, B. Photoelectrocatalytic degradation of blistering agent sulfur mustard to non-blistering substances using pPy/NiOBPC nanocomposite. J. Mol. Catal. A: Chem. 2013, 366, 368–374.

    Article  Google Scholar 

  22. [22]

    Grandcolas, M.; Louvet, A.; Keller, N.; Keller, V. Layer-by-layer deposited titanate-based nanotubes for solar photocatalytic removal of chemical warfare agents from textiles. Angew. Chem. Int. Edit. 2009, 48, 161–164.

    Article  Google Scholar 

  23. [23]

    Ghemes, A.; Minami, Y.; Muramatsu, J.; Okada, M.; Mimura, H.; Inoue, Y. Fabrication and mechanical properties of carbon nanotube yarns spun from ultra-long multi-walled carbon nanotube arrays. Carbon 2012, 50, 4579–4587.

    Article  Google Scholar 

  24. [24]

    Miao, M. H. Production, structure and properties of twistless carbon nanotube yarns with a high density sheath. Carbon 2012, 50, 4973–4983.

    Article  Google Scholar 

  25. [25]

    Steiner, S.; Busato, S.; Ermanni, P. Mechanical properties and morphology of papers prepared from single-walled carbon nanotubes functionalized with aromatic amides. Carbon 2012, 50, 1713–1719.

    Article  Google Scholar 

  26. [26]

    Decker, J. E.; Hight Walker, A. R.; Bosnick, K.; Clifford, C. A.; Dai, L.; Fagan, J.; Hooker, S.; Jakubek, Z. J.; Kingston, C.; Makar, J. et al. Sample preparation protocols for realization of reproducible characterization of single-wall carbon nanotubes. Metrologia 2009, 46, 682–692.

    Article  Google Scholar 

  27. [27]

    Ritchie, N. DTSA-II [Online]. National Institute of Standards and Technology (NIST); Retrieved from the Public Domain Software from NIST: http://www.cstl.nist.gov/div837/837.02/index.html (accessed Oct 24, 2012).

  28. [28]

    Ramaseshan, R.; Sundarrajan, S.; Liu, Y. J.; Barhate, R. S.; Lala, N. L.; Ramakrishna, S. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants. Nanotechnology 2006, 17, 2947–2953.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mark M. Bailey or Angela R. Hight Walker.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bailey, M.M., Heddleston, J.M., Davis, J. et al. Functionalized, carbon nanotube material for the catalytic degradation of organophosphate nerve agents. Nano Res. 7, 390–398 (2014). https://doi.org/10.1007/s12274-014-0405-3

Download citation

Keywords

  • single-wall carbon nanotube functionalization
  • catalytically-active nanomaterial
  • chemical warfare agent