Nano Research

, Volume 7, Issue 3, pp 353–364 | Cite as

Activating ZnO nanorod photoanodes in visible light by Cu ion implantation

  • Meng Wang
  • Feng Ren
  • Guangxu Cai
  • Yichao Liu
  • Shaohua Shen
  • Liejin Guo
Research Article

Abstract

Utilization of visible light is of crucial importance for exploiting efficient semiconductor catalysts for solar water splitting. In this study, an advanced ion implantation method was utilized to dope Cu ions into ZnO nanorod arrays for photoelectrochemical water splitting in visible light. X-ray diffraction (XRD) and X-ray photo-electron spectroscopy (XPS) results revealed that Cu+ together with a small amount of Cu2+ were highly dispersed within the ZnO nanorod arrays. The Cu ion doped ZnO nanorod arrays displayed extended optical absorption and enhanced photoelectrochemical performance under visible light illumination (λ > 420 nm). A considerable photocurrent density of 18 μA/cm2 at 0.8 V (vs. a saturated calomel electrode) was achieved, which was about 11 times higher than that of undoped ZnO nanorod arrays. This study proposes that ion implantation could be an effective approach for developing novel visible-light-driven photocatalytic materials for water splitting.

Keywords

ion implantation Cu ion doping ZnO nanorods photoanode water splitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_401_MOESM1_ESM.pdf (836 kb)
Supplementary material, approximately 835 KB.

References

  1. [1]
    Tian, Z. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; McDermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. Complex and oriented ZnO nanostructures. Nat. Mater. 2003, 2, 821–826.CrossRefGoogle Scholar
  2. [2]
    Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R. Sol-gel template synthesis of semiconductor nanostructures. Chem. Mater. 1997, 9, 857–862.CrossRefGoogle Scholar
  3. [3]
    Sakthivel, S.; Neppolian, B.; Shankar, M. V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. C 2003, 77, 65–82.CrossRefGoogle Scholar
  4. [4]
    Yang, J. L.; An, S. J.; Park, W. I.; Yi, G. C.; Choi, W. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition. Adv. Mater. 2004, 16, 1661–1664.CrossRefGoogle Scholar
  5. [5]
    Wu, J.-J.; Tseng, C.-H. Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl. Catal. B 2006, 66, 51–57.CrossRefGoogle Scholar
  6. [6]
    Mansilla, H. D.; Villaseñor, J.; Maturana, G.; Baeza, J.; Freer, J.; Durán, N. ZnO-catalysed photodegradation of kraft black liquor. J. Photoch. Photobio. A 1994, 78, 267–273.CrossRefGoogle Scholar
  7. [7]
    Gu, L.; Zheng, K.; Zhou, Y.; Li, J.; Mo, X.; Patzke, G. R.; Chen, G. Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity. Sens. Actuators. B 2011, 159, 1–7.CrossRefGoogle Scholar
  8. [8]
    Akpan, U. G.; Hameed, B. H. The advancements in sol-gel method of doped-TiO2 photocatalysts. Appl. Catal., A 2010, 375, 1–11.CrossRefGoogle Scholar
  9. [9]
    Das, S. C.; Green, R. J.; Podder, J.; Regier, T. Z.; Chang, G. S.; Moewes, A. Band gap tuning in ZnO through Ni doping via spray pyrolysis. J. Phys. Chem. C 2013, 117, 12745–12753.CrossRefGoogle Scholar
  10. [10]
    Yang, X.; Wolcott, A.; Wang, G.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano. Lett. 2009, 9, 2331–2336.CrossRefGoogle Scholar
  11. [11]
    Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.CrossRefGoogle Scholar
  12. [12]
    Huang, K.-C.; Chang, Y.-H.; Chen, C.-Y.; Liu, C.-Y.; Lin, L.-Y.; Vittal, R.; Wu, C.-G.; Lin, K.-F.; Ho, K.-C. Improved exchange reaction in an ionic liquid electrolyte of a quasi-solid-state dye-sensitized solar cell by using 15-crown-5-functionalized MWCNT. J. Mater. Chem. 2011, 21, 18467–18474.CrossRefGoogle Scholar
  13. [13]
    Schölin, R.; Quintana, M.; Johansson, E. M. J.; Hahlin, M.; Marinado, T.; Hagfeldt, A.; Rensmo, H. Preventing dye aggregation on ZnO by adding water in the dye-sensitization process. J. Phys. Chem. C 2011, 115, 19274–19279.CrossRefGoogle Scholar
  14. [14]
    Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 2007, 7, 1793–1798.CrossRefGoogle Scholar
  15. [15]
    Tang, Y.; Hu, X.; Chen, M.; Luo, L.; Li, B.; Zhang, L. CdSe nanocrystal sensitized ZnO core-shell nanorod array films: Preparation and photovoltaic properties. Electrochim. Acta 2009, 54, 2742–2747.CrossRefGoogle Scholar
  16. [16]
    Bang, J. H.; Kamat, P. V. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 2009, 3, 1467–1476.CrossRefGoogle Scholar
  17. [17]
    Chouhan, N.; Yeh, C. L.; Hu, S. F.; Huang, J. H.; Tsai, C. W.; Liu, R. S.; Chang, W. S.; Chen, K. H. Array of CdSe QD-sensitized ZnO nanorods serves as photoanode for water splitting. J. Electrochem. Soc. 2010, 157, B1430–B1433.CrossRefGoogle Scholar
  18. [18]
    Wang, X.; Zhu, H.; Xu, Y.; Wang, H.; Tao, Y.; Hark, S.; Xiao, X.; Li, Q. Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: Synthesis and photoelectrochemical properties. ACS Nano 2010, 4, 3302–3308.CrossRefGoogle Scholar
  19. [19]
    Tanabe, I.; Tatsuma, T. Plasmonic manipulation of color and morphology of single silver nanospheres. Nano. Lett. 2012, 12, 5418–5421.CrossRefGoogle Scholar
  20. [20]
    Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712.CrossRefGoogle Scholar
  21. [21]
    Burlacov, I.; Jirkovský, J.; Müller, M.; Heimann, R. B. Induction plasma-sprayed photocatalytically active titania coatings and their characterisation by micro-Raman spectroscopy. Surf. Coat. Technol. 2006, 201, 255–264.CrossRefGoogle Scholar
  22. [22]
    Narayan, H.; Alemu, H.; Macheli, L.; Thakurdesai, M.; Rao, T. K. G. Synthesis and characterization of Y3+-doped TiO2 nanocomposites for photocatalytic applications. Nanotechnology 2009, 20, 255601.CrossRefGoogle Scholar
  23. [23]
    Jayakumar, O. D.; Salunke, H. G.; Kadam, R. M.; Mohapatra, M.; Yaswant, G.; Kulshreshtha, S. K. Magnetism in Mn-doped ZnO nanoparticles prepared by a co-precipitation method. Nanotechnology 2006, 17, 1278–1285.CrossRefGoogle Scholar
  24. [24]
    Ba-Abbad, M. M.; Kadhum, A. A. H.; Mohamad, A. B.; Takriff, M. S.; Sopian, K. Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol-gel technique. Chemosphere 2013, 91, 1604–1611.CrossRefGoogle Scholar
  25. [25]
    Yates, H. M.; Nolan, M. G.; Sheel, D. W.; Pemble, M. E. The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition. J. Photoch. Photobio. A 2006, 179, 213–223.CrossRefGoogle Scholar
  26. [26]
    Fragalà, M. E.; Cacciotti, I.; Aleeva, Y.; Lo Nigro, R. L.; Bianco, A.; Malandrino, G.; Spinella, C.; Pezzotti, G.; Gusmano, G. Core-shell Zn-doped TiO2-ZnO nanofibers fabricated via a combination of electrospinning and metal-organic chemical vapour deposition. CrystEngComm 2010, 12, 3858–3865.CrossRefGoogle Scholar
  27. [27]
    Bhirud, A. P.; Sathaye, S. D.; Waichal, R. P.; Nikam, L. K.; Kale, B. B. An eco-friendly, highly stable and efficient nanostructured p-type N-doped ZnO photocatalyst for environmentally benign solar hydrogen production. Green Chem. 2012, 14, 2790–2798.CrossRefGoogle Scholar
  28. [28]
    Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev. 2007, 11, 401–425.CrossRefGoogle Scholar
  29. [29]
    Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Frey, L.; Schmuki, P. Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes. Nano Lett. 2006, 6, 1080–1082.CrossRefGoogle Scholar
  30. [30]
    Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Kleber, S.; Schmuki, P. TiO2 nanotube layers: Dose effects during nitrogen doping by ion implantation. Chem. Phys. Lett. 2006, 419, 426–429.CrossRefGoogle Scholar
  31. [31]
    Zhou, J.; Takeuchi, M.; Ray, A. K.; Anpo, M.; Zhao, X. S. Enhancement of photocatalytic activity of P25 TiO2 by vanadium-ion implantation under visible light irradiation. J. Colloid Interf. Sci. 2007, 311, 497–501.CrossRefGoogle Scholar
  32. [32]
    Anpo, M.; Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 2003, 216, 505–516.CrossRefGoogle Scholar
  33. [33]
    Takeuchi, M.; Sakai, S.; Matsuoka, M.; Anpo, M. Preparation of the visible light responsive TiO2 thin film photocatalysts by the RF magnetron sputtering deposition method. Res. Chem. Intermediat. 2009, 35, 973–983.CrossRefGoogle Scholar
  34. [34]
    Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 2003, 42, 3031–3034.CrossRefGoogle Scholar
  35. [35]
    Wang, M.; Jiang, J.; Liu, G.; Shi, J.; Guo, L. Controllable synthesis of double layered tubular CdSe/ZnO arrays and their photoelectrochemical performance for hydrogen production. Appl. Catal. B 2013, 138–139, 304–310.CrossRefGoogle Scholar
  36. [36]
    Ren, F.; Zhou, X. D.; Liu, Y. C.; Wang, Y. Q.; Cai, G. X.; Xiao, X. H.; Dai, Z. G.; Li, W. Q.; Yan, S. J.; Wu, W.; et al. Fabrication and properties of TiO2 nanofilms on different substrates by a novel and universal method of Ti-ion implantation and subsequent annealing. Nanotechnology 2013, 24, 255603.CrossRefGoogle Scholar
  37. [37]
    Ren, F.; Jiang, C.; Liu, C.; Wang, J.; Oku, T. Controlling the morphology of Ag nanoclusters by ion implantation to different doses and subsequent annealing. Phys. Rev. Lett. 2006, 97, 165501.CrossRefGoogle Scholar
  38. [38]
    Yang, F.; Ma, S.; Zhang, X.; Zhang, M.; Li, F.; Liu, J.; Zhao, Q. Blue-green and red luminescence from ZnO/porous silicon and ZnO:Cu/porous silicon nanocomposite films. Superlattice. Microst. 2012, 52, 210–220.CrossRefGoogle Scholar
  39. [39]
    Shen, S.; Kronawitter, C. X.; Jiang, J.; Guo, P.; Guo, L.; Mao, S. S. A ZnO/ZnO:Cr isostructural nanojunction electrode for photoelectrochemical water splitting. Nano Energy 2013, 2, 958–965.CrossRefGoogle Scholar
  40. [40]
    Manjón, F. J.; Marí, B.; Serrano, J.; Romero, A. H. Silent Raman modes in zinc oxide and related nitrides. J. Appl. Phys. 2005, 97, 053516.CrossRefGoogle Scholar
  41. [41]
    Serrano, J.; Manjón, F. J.; Romero, A. H.; Widulle, F.; Lauck, R.; Cardona, M. Dispersive phonon linewidths: The E2 phonons of ZnO. Phys. Rev. Lett. 2003, 90, 055510.CrossRefGoogle Scholar
  42. [42]
    Kaschner, A.; Haboeck, U.; Strassburg, M.; Strassburg, M.; Kaczmarczyk, G.; Hoffmann, A.; Thomsen, C.; Zeuner, A.; Alves, H. R.; Hofmann, D. M.; et al. Nitrogen-related local vibrational modes in ZnO:N. Appl. Phys. Lett. 2002, 80, 1909–1911.CrossRefGoogle Scholar
  43. [43]
    Tütüncü, H. M.; Srivastava, G. P.; Duman, S. Lattice dynamics of the zinc-blende and wurtzite phases of nitrides. Physica B 2002, 316–317, 190–194.CrossRefGoogle Scholar
  44. [44]
    Demangeot, F.; Groenen, J.; Frandon, J.; Renucci, M. A.; Briot, O.; Clur, S.; Aulombard, R. L. Coupling of GaN- and AlN-like longitudinal optic phonons in Ga1−xAlxN solid solutions. Appl. Phys. Lett. 1998, 72, 2674–2676.CrossRefGoogle Scholar
  45. [45]
    Wang, L. S.; Tripathy, S.; Sun, W. H.; Chua, S. J. Micro-Raman spectroscopy of Si-, C-, Mg- and Be-implanted GaN layers. J. Raman Spectrosc. 2004, 35, 73–77.CrossRefGoogle Scholar
  46. [46]
    Shuai, M.; Liao, L.; Lu, H. B.; Zhang, L.; Li, J. C.; Fu, D. J. Room-temperature ferromagnetism in Cu+ implanted ZnO nanowires. J. Phys. D 2008, 41, 135010.CrossRefGoogle Scholar
  47. [47]
    Kulkarni, G. U.; Rao, C. N. R. EXAFS and XPS investigations of Cu/ZnO catalysts and their interaction with Co and methanol. J. Phys. D: Appl. Phys. 2003, 22, 183–189.Google Scholar
  48. [48]
    Jing, L. Q.; Qu, Y. C.; Wang, B. Q.; Li, S. D.; Jiang, B. J.; Yang, L. B.; Fu, W.; Fu, H. G.; Sun, J. Z. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energ. Mat. Sol. C 2006, 90, 1773–1787.CrossRefGoogle Scholar
  49. [49]
    Guo, P.; Jiang, J.; Shen, S.; Guo, L. ZnS/ZnO heterojunction as photoelectrode: Type II band alignment towards enhanced photoelectrochemical performance. Int. J. Hydrogen Energy 2013, 38, 13097–13103.CrossRefGoogle Scholar
  50. [50]
    Wang, X. B.; Song, C.; Geng, K. W.; Zeng, F.; Pan, F. Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering. Appl. Surf. Sci. 2007, 253, 6905–6909.CrossRefGoogle Scholar
  51. [51]
    Shen, S.; Jiang, J.; Guo, P.; Kronawitter, C. X.; Mao, S. S.; Guo, L. Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes. Nano Energy 2012, 1, 732–741.CrossRefGoogle Scholar
  52. [52]
    Shen, S.; Kronawitter, C. X.; Jiang, J.; Mao, S. S.; Guo, L. Surface tuning for promoted charge transfer in hematite nanorod arrays as water-splitting photoanodes. Nano Res. 2012, 5, 327–336.CrossRefGoogle Scholar
  53. [53]
    Kouklin, N. Cu-doped ZnO nanowires for efficient and multispectral photodetection applications. Adv. Mater. 2008, 20, 2190–2194.CrossRefGoogle Scholar
  54. [54]
    Garces, N. Y.; Wang, L.; Bai, L.; Giles, N. C.; Halliburton, L. E.; Cantwell, G. Role of copper in the green luminescence from ZnO crystals. Appl. Phys. Lett. 2002, 81, 622–624.CrossRefGoogle Scholar
  55. [55]
    Samanta, K.; Arora, A. K.; Katiyar, R. S. Impurity induced bond-softening and defect states in ZnO:Cu. J. Appl. Phys. 2011, 110, 043523.CrossRefGoogle Scholar
  56. [56]
    Ghosh, A.; Ghule, A.; Sharma, R. Effect of Cu doping on LPG sensing properties of soft chemically grown nano-structured ZnO thin film. J. Phys. Conf. Ser. 2012, 365, 012022.CrossRefGoogle Scholar
  57. [57]
    Song, D. M.; Wang, T. H.; Li, J. C. First principles study of periodic size dependent band gap variation of Cu doped ZnO single-wall nanotube. J. Mol. Model. 2012, 18, 5035–5040.CrossRefGoogle Scholar
  58. [58]
    Mora-Seró, I.; Fabregat-Santiago, F.; Denier, B.; Bisquert, J.; Tena-Zaera, R.; Elias, J.; Lévy-Clément, C. Determination of carrier density of ZnO nanowires by electrochemical techniques. Appl. Phys. Lett. 2006, 89, 203117.CrossRefGoogle Scholar
  59. [59]
    Xing, G. Z.; Yi, J. B.; Tao, J. G.; Liu, T.; Wong, L. M.; Zhang, Z.; Li, G. P.; Wang, S. J.; Ding, J.; Sum, T. C., et al. Comparative study of room-temperature ferromagnetism in Cu-doped ZnO nanowires enhanced by structural inhomogeneity. Adv. Mater. 2008, 20, 3521–3527.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Meng Wang
    • 1
  • Feng Ren
    • 2
  • Guangxu Cai
    • 2
  • Yichao Liu
    • 2
  • Shaohua Shen
    • 1
  • Liejin Guo
    • 1
  1. 1.International Research Centre for Renewable Energy, State Key Laboratory of Multiphase Flow in Power EngineeringXi’an Jiaotong UniversityShaanxiChina
  2. 2.School of Physics and Technology, Center for Ion Beam ApplicationWuhan UniversityWuhanChina

Personalised recommendations