Skip to main content
Log in

Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT:PSS

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We demonstrate the hydrothermal synthesis of long copper nanowires based on a simple protocol. We show that the purification of the nanowires is very important and can be achieved easily by wet treatment with glacial acetic acid. Fabrication of random networks of purified copper nanowires leads to flexible transparent electrodes with excellent optoelectronic performances (e.g., 55 Ω/sq. at 94% transparency). The process is carried out at room temperature and no post-treatment is necessary. Hybrid materials with the conductive polymer PEDOT:PSS show similar properties (e.g., 46 Ω/sq. at 93% transparency), with improved mechanical properties. Both electrodes were integrated in capacitive touch sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yang, S. B.; Kong, B.-S.; Jung, D.-H.; Baek, Y.-K.; Han, C.-S.; Oh, S.-K.; Jung, H.-T. Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale 2011, 3, 1361–1373.

    Article  Google Scholar 

  2. Hecht, D. S.; Hu, L.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

    Article  Google Scholar 

  3. Lu, F.; Meziani, M. J.; Cao, L.; Sun, Y.-P. Separated metallic and semiconducting single-walled carbon nanotubes: Opportunities in transparent electrodes and beyond. Langmuir 2011, 27, 4339–4350.

    Article  Google Scholar 

  4. Spadafora, E. J.; Saint-Aubin, K.; Celle, C.; Demadrille, R.; Grévin, B.; Simonato, J.-P. Work function tuning for flexible transparent electrodes based on functionalized metallic single walled carbon nanotubes. Carbon 2012, 50, 3459–3464.

    Article  Google Scholar 

  5. Wassei, J. K.; Kaner, R. B. Graphene, a promising transparent conductor. Mater. Today 2010, 13, 52–59.

    Article  Google Scholar 

  6. Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 2012, 6, 809–817.

    Article  Google Scholar 

  7. Langley, D.; Giusti, G.; Mayousse, C.; Celle, C.; Bellet, D.; Simonato, J.-P. Flexible transparent conductive materials based on silver nanowire networks: A review. Nanotechnology 2013, 24, 452001.

    Article  Google Scholar 

  8. Celle, C.; Mayousse, C.; Moreau, E.; Basti, H.; Carella, A.; Simonato, J.-P. Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res. 2012, 5, 427–433.

    Article  Google Scholar 

  9. Mayousse, C.; Celle, C.; Moreau, E.; Mainguet, J.-F.; Carella, A.; Simonato, J.-P. Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors. Nanotechnology 2013, 24, 215501.

    Article  Google Scholar 

  10. Hu, L.; Kim, H. S.; Lee, J.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowires electrodes. ACS Nano 2010, 4, 2955–2963.

    Article  Google Scholar 

  11. Lee, J.; Lee, I.; Kim, T.-S.; Lee, J.-Y. Efficient welding of silver nanowire networks without post-processing. Small 2013, 9, 2887–2894.

    Article  Google Scholar 

  12. Coskun, S.; Selen Ates, E.; Emrah Unalan, H. Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 2013, 24, 125202.

    Article  Google Scholar 

  13. Mehra, S.; Christoforo, M. G.; Peumans, P.; Salleo, A. Solution processed zinc oxide nanopyramid/silver nanowire transparent network films with highly tunable light scattering properties. Nanoscale 2013, 5, 4400–4403.

    Article  Google Scholar 

  14. Liang, J.; Li, L.; Niu, X.; Yu, Z.; Pei, Q. Elastomeric polymer light-emitting devices and displays. Nat. Photonics 2013, 7, 817–824.

    Article  Google Scholar 

  15. Choi, H.; Park, S.-H. Seedless growth of free-standing copper nanowires by chemical vapor deposition. J. Am. Chem. Soc. 2004, 126, 6248–6249.

    Article  Google Scholar 

  16. Gao, T.; Meng, G.; Wang, Y.; Sun, S.; Zhang, L. Electrochemical synthesis of copper nanowires. J. Phys. Condens. Matter 2002, 14, 355–363.

    Article  Google Scholar 

  17. Zhao, Y.; Zhang, Y.; Li, Y.; Yan, Z. Soft synthesis of single-crystal copper nanowires of various scales. New J. Chem. 2012, 36, 130–138.

    Article  Google Scholar 

  18. Molares, M. E. T.; Buschmann, V.; Dobrev, D.; Neumann, R.; Scholz, R.; Schuchert, I. U.; Vetter, J. Single-crystalline copper nanowires produced track membranes. Adv. Mater. 2001, 13, 62–65.

    Article  Google Scholar 

  19. Mohl, M.; Pusztai, P.; Kukovecz, A.; Konya, Z.; Kukkola, J.; Kordas, K.; Vajtai, R.; Ajayan, P. M. Low-temperature large-scale synthesis and electrical testing of ultralong copper nanowires. Langmuir 2010, 26, 16496–16502.

    Article  Google Scholar 

  20. Liu, Z.; Yang, Y.; Liang, J.; Hu, Z.; Li, S.; Peng, S.; Qian, Y. Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process. J. Phys. Chem. B 2003, 107, 12658–12661.

    Article  Google Scholar 

  21. Kevin, M.; Ong, W. L.; Lee, G. H.; Ho, G. W. Formation of hybrid structures: Copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature. Nanotechnology 2011, 22, 235701.

    Article  Google Scholar 

  22. Jia, B.; Qin, M.; Zhang, Z.; Chu, A.; Zhang, L.; Liu, Y.; Qu, X. The Influence of reagents on the preparation of Cu nanowires by tetradecylamine-assisted hydrothermal method. J. Mater. Sci. 2013, 48, 4073–4080.

    Article  Google Scholar 

  23. Chang, Y.; Lye, M. L.; Zeng, H. C. Large-scale synthesis of high-quality ultralong copper nanowires. Langmuir 2005, 21, 3746–3748.

    Article  Google Scholar 

  24. Cho, Y.-S.; Huh, Y.-D. Synthesis of ultralong copper nanowires by reduction of copper-amine complexes. Mater. Lett. 2009, 63, 227–229.

    Article  Google Scholar 

  25. Jin, M.; He, G.; Zhang, H.; Zeng, J.; Xie, Z.; Xia, Y. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew. Chem. Int. Ed. 2011, 50, 10560–10564.

    Article  Google Scholar 

  26. Rathmell, A. R.; Bergin, S. M.; Hua, Y.-L.; Li, Z.-Y.; Wiley, B. J. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv. Mater. 2010, 22, 3558–3563.

    Article  Google Scholar 

  27. Rathmell, A. R.; Wiley, B. J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv. Mater. 2011, 23, 4798–4803.

    Article  Google Scholar 

  28. Zhang, D.; Wang, R.; Wen, M.; Weng, D.; Cui, X.; Sun, J.; Li, H.; Lu, Y. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J. Am. Chem. Soc. 2012, 134, 14283–14286.

    Article  Google Scholar 

  29. Guo, H.; Lin, N.; Chen, Y.; Wang, Z.; Xie, Q.; Zheng, T.; Gao, N.; Li, S.; Kang, J.; Cai, D.; et al. Copper nanowires as fully transparent conductive electrodes. Sci. Rep. 2013, 3, 2323.

    Google Scholar 

  30. Wu, H.; Hu, L.; Rowell, M. W.; Kong, D.; Cha, J. J.; McDonough, J. R.; Zhu, J.; Yang, Y.; McGehee, M. D.; Cui, Y. Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett. 2010, 10, 4242–4248.

    Article  Google Scholar 

  31. Wu, H.; Kong, D.; Ruan, Z.; Hsu, P.-C.; Wang, S.; Yu, Z.; Carney, T. J.; Hu, L.; Fan, S.; Cui, Y. A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 2013, 8, 421–425.

    Article  Google Scholar 

  32. Sachse, C.; Weiß, N.; Gaponik, N.; Müller-Meskamp, L.; Eychmüller, A.; Leo, K. ITO-free, small-molecule organic solar cells on spray-coated copper-nanowire-based transparent electrodes. Adv. Energy Mater. in press, DOI:10.1002/aenm.201300737.

  33. Zhao, Y.; Zhang, Y.; Li, Y.; He, Z.; Yan, Z. Rapid and Large-scale synthesis of Cu nanowires via a continuous flow solvothermal process and its application in dye-sensitized solar cells (DSSCs). RSC Adv. 2012, 2, 11544–11551.

    Article  Google Scholar 

  34. Kholmanov, I. N.; Domingues, S. H.; Chou, H.; Wang, X.; Tan, C.; Kim, J.-Y.; Li, H.; Piner, R.; Zarbin, A. J. G.; Ruoff, R. S. Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano 2013, 7, 1811–1816.

    Article  Google Scholar 

  35. Liang, J.; Bi, H.; Wan, D.; Huang, F. Novel Cu nanowires/graphene as the back contact for CdTe solar cells. Adv. Funct. Mater. 2012, 22, 1267–1271.

    Article  Google Scholar 

  36. Shi, Y.; Li, H.; Chen, L.; Huang, X. Obtaining ultra-long copper nanowires via a hydrothermal process. Sci. Technol. Adv. Mater. 2005, 6, 761–765.

    Article  Google Scholar 

  37. Chavez, K. L.; Hess, D. W. A novel method of etching copper oxide using acetic acid. J. Electrochem. Soc. 2001, 148, G640–G643.

    Article  Google Scholar 

  38. Granqvist, C. G. Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mater. Sol. Cells 2007, 91, 1529–1598.

    Article  Google Scholar 

  39. Preston, C.; Xu, Y.; Han, X.; Munday, J. N.; Hu, L. Optical haze of transparent and conductive silver nanowire films. Nano Res. 2013, 6, 461–468.

    Article  Google Scholar 

  40. Kumar, A. B. V. K.; Bae, C. W.; Piao, L.; Kim, S.-H. Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze. Mater. Res. Bull. 2013, 48, 2944–2949.

    Article  Google Scholar 

  41. Choi, D. Y.; Kang, H. W.; Sung, H. J.; Kim, S. S. Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method. Nanoscale 2013, 5, 977–983.

    Article  Google Scholar 

  42. Lee, J.-H.; Shin, H.-S.; Noh, Y.-J.; Na, S.-I.; Kim, H.-K. Brush painting of transparent PEDOT/Ag nanowire/PEDOT multilayer electrodes for flexible organic solar cells. Sol. Energy Mater. Sol. Cells 2013, 114, 15–23.

    Article  Google Scholar 

  43. Yang, L.; Zhang, T.; Zhou, H.; Price, S. C.; Wiley, B. J.; You, W. Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 2011, 3, 4075–4084.

    Article  Google Scholar 

  44. Lee, J.; Lee, P.; Lee, H. B.; Hong, S.; Lee, I.; Yeo, J.; Lee, S. S.; Kim, T.-S.; Lee, D.; Ko, S. H. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv. Funct. Mater. 2013, 23, 4171–4176.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caroline Celle or Jean-Pierre Simonato.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayousse, C., Celle, C., Carella, A. et al. Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT:PSS. Nano Res. 7, 315–324 (2014). https://doi.org/10.1007/s12274-013-0397-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0397-4

Keywords

Navigation