Skip to main content
Log in

Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transparent electrodes made of silver nanowires (AgNWs) exhibit higher flexibility when compared to those made of tin doped indium oxide (ITO) and are expected to be applied in plastic electronics. However, these transparent electrodes composed of AgNWs show high haze because the wires cause strong light scattering in the visible range. Reduction of the wire diameter has been proposed as a way to weaken light scattering, although there have seldom been any studies focusing on the haze because of the difficulty involved in controlling the wire diameter. In this report, we show that the haze can be easily reduced by increasing the length of AgNWs with a large diameter. Ultra-long (u-long) AgNWs with lengths in the range of 20–100 μm and a maximum length of 230 μm have been successfully synthesized by adjusting the reaction temperature and the stirring speed of a one-step polyol process. Compared to typical AgNWs (with diameter and length of 70 nm and 10 μm, respectively) and ITO, a transparent electrode consisting of u-long AgNWs 91 nm in diameter demonstrated a low haze of 3.4%-1.6% and a low sheet resistance of 24–109 Ω/sq. at a transmittance of 94%–97%. Even when fabricated at room temperature without any post-treatment, the electrodes composed of u-long AgNWs achieved a sheet resistance of 19 Ω/sq. at a transmittance of 80%, which is six orders of magnitude lower than that of typical AgNWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B. Hebard, A. F., et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.

    Article  Google Scholar 

  2. Cao, Q.; Zhu, Z.-T.; Lemaitre, M. G.; Xia, M.-G.; Shim, M.; Rogers, J. A. Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes. Appl. Phys. Lett. 2006, 88, 113511.

    Article  Google Scholar 

  3. Dan, B.; Irvin, G. C.; Pasquali, M. Continuous and scalable fabrication of transparent conducting carbon nanotube films. ACS Nano 2009, 3, 835–843.

    Article  Google Scholar 

  4. Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

    Article  Google Scholar 

  5. Wang, X.; Zhi, L.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

    Article  Google Scholar 

  6. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.; Song, Y., et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  Google Scholar 

  7. Tvingstedt, K.; Inganäs, O. Electrode grids for ITO free organic photovoltaic devices. Adv. Mater. 2007, 19, 2893–2897.

    Article  Google Scholar 

  8. O’Connor, B.; Haughn, C.; An, K.-H.; Pipe, K. P.; Shtein, M. Transparent and conductive electrodes based on unpatterned, thin metal films. Appl. Phys. Lett. 2008, 93, 223304.

    Article  Google Scholar 

  9. Kang, M.-G.; Kim, M.-S.; Kim, J. S.; Guo, L. J. Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 2008, 20, 4408–4413.

    Article  Google Scholar 

  10. Hu, L.; Kim, H.; Lee, J.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

    Article  Google Scholar 

  11. De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.

    Article  Google Scholar 

  12. Hu, L.; Wu, H.; Cui, Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 2011, 36, 760–765.

    Article  Google Scholar 

  13. Madaria, A. R; Kumar A.; Zhou, C. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 2011, 22, 245201.

    Article  Google Scholar 

  14. Lee, J.; Lee, P.; Lee, H.; Lee, D.; Lee, S.; Ko, S. H. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 2012, 4, 6408–6414.

    Article  Google Scholar 

  15. Tokuno, T.; Nogi, M.; Karakawa, M.; Jiu, J.; Nge, T.; Aso, Y.; Suganuma, K. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 2011, 4, 1215–1222.

    Article  Google Scholar 

  16. Mayousse, C.; Celle, C.; Moreau, E.; Mainguet, J.; Carella, A.; Simonato, J. Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors. Nanotechnology 2013, 24, 215501.

    Google Scholar 

  17. Coskun, S.; Ates, E. S.; Unalan, H. E. Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 2013, 24, 125202.

    Article  Google Scholar 

  18. Gaynor, W.; Lee, J.; Peumans, P. Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes. ACS Nano 2009, 4, 30–34.

    Article  Google Scholar 

  19. Gaskell, J. M.; Sheel, D. W. Deposition of indium tin oxide by atmospheric pressure chemical vapour deposition. Thin Solid Films 2012, 520, 4110–4113.

    Article  Google Scholar 

  20. Kim, T.; Canlier, A.; Kim, G.; Choi, J.; Park, M.; Han, S. Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS Appl. Mater. Inter. 2013, 5, 788–794.

    Article  Google Scholar 

  21. Cronin, J. P.; Trosky, M.; Agrawal, A. Reduction of haze in tin oxide transparent conductive coatings on glass. US Patent, 6,268,059 B1, 2001.

    Google Scholar 

  22. Hecht, D. S.; Thomas, D.; Hu, L.; Ladous, C.; Lam, T.; Park, Y.; Irvin, G.; Drzaic, P. Carbon-nanotube film on plastic as transparent electrode for resistive touch screens. J. Soc. Inf. Display 2009, 17, 941–946.

    Article  Google Scholar 

  23. Yamada, T.; Ishihara, M.; Hasegawa, M. Large area coating of graphene at low temperature using a roll-to-roll microwave plasma chemical vapor deposition. Thin Solid Films 2013, 532, 89–93.

    Article  Google Scholar 

  24. Wu, J.; Agrawal, M.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 2010, 4, 43–48.

    Article  Google Scholar 

  25. Katagiri, K.; Hunakubo, T. Metal nanowires, method for producing same, transparent conductor and touch panel. US Patent Appl., 20120255762 A1, 2012.

    Google Scholar 

  26. Preston, C.; Xu, Y.; Han, X.; Munday, J. N.; Hu, L. Optical haze of transparent and conductive silver nanowire films. Nano Res. 2013, 6, 461–468.

    Article  Google Scholar 

  27. Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168.

    Article  Google Scholar 

  28. Jiu, J.; Murai, K.; Kim, D.; Kim, K.; Suganuma, K. Preparation of Ag nanorods with high yield by polyol process. Mater. Chem. Phys. 2009, 114, 333–338.

    Article  Google Scholar 

  29. Lee, J.; Lee, P.; Lee, D.; Lee, S.; Ko, S. H. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst. Growth Des. 2012, 12, 5598–5605

    Article  Google Scholar 

  30. Bergin, S. M.; Chen, Y.; Rathmell, A. R.; Charbonneau, P.; Li, Z.; Wiley, B. J. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 2012, 4, 1996–2004.

    Article  Google Scholar 

  31. Groep, J.; Spinelli, P.; Polman, A. Transparent conducting silver nanowire networks. Nano Lett. 2012, 12, 3138–3144.

    Article  Google Scholar 

  32. Kottmann, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S. Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B 2001, 64, 235402

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teppei Araki.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araki, T., Jiu, J., Nogi, M. et al. Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method. Nano Res. 7, 236–245 (2014). https://doi.org/10.1007/s12274-013-0391-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0391-x

Keywords

Navigation