Abstract
Transparent electrodes made of silver nanowires (AgNWs) exhibit higher flexibility when compared to those made of tin doped indium oxide (ITO) and are expected to be applied in plastic electronics. However, these transparent electrodes composed of AgNWs show high haze because the wires cause strong light scattering in the visible range. Reduction of the wire diameter has been proposed as a way to weaken light scattering, although there have seldom been any studies focusing on the haze because of the difficulty involved in controlling the wire diameter. In this report, we show that the haze can be easily reduced by increasing the length of AgNWs with a large diameter. Ultra-long (u-long) AgNWs with lengths in the range of 20–100 μm and a maximum length of 230 μm have been successfully synthesized by adjusting the reaction temperature and the stirring speed of a one-step polyol process. Compared to typical AgNWs (with diameter and length of 70 nm and 10 μm, respectively) and ITO, a transparent electrode consisting of u-long AgNWs 91 nm in diameter demonstrated a low haze of 3.4%-1.6% and a low sheet resistance of 24–109 Ω/sq. at a transmittance of 94%–97%. Even when fabricated at room temperature without any post-treatment, the electrodes composed of u-long AgNWs achieved a sheet resistance of 19 Ω/sq. at a transmittance of 80%, which is six orders of magnitude lower than that of typical AgNWs.
Similar content being viewed by others
References
Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B. Hebard, A. F., et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.
Cao, Q.; Zhu, Z.-T.; Lemaitre, M. G.; Xia, M.-G.; Shim, M.; Rogers, J. A. Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes. Appl. Phys. Lett. 2006, 88, 113511.
Dan, B.; Irvin, G. C.; Pasquali, M. Continuous and scalable fabrication of transparent conducting carbon nanotube films. ACS Nano 2009, 3, 835–843.
Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.
Wang, X.; Zhi, L.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.
Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.; Song, Y., et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.
Tvingstedt, K.; Inganäs, O. Electrode grids for ITO free organic photovoltaic devices. Adv. Mater. 2007, 19, 2893–2897.
O’Connor, B.; Haughn, C.; An, K.-H.; Pipe, K. P.; Shtein, M. Transparent and conductive electrodes based on unpatterned, thin metal films. Appl. Phys. Lett. 2008, 93, 223304.
Kang, M.-G.; Kim, M.-S.; Kim, J. S.; Guo, L. J. Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 2008, 20, 4408–4413.
Hu, L.; Kim, H.; Lee, J.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.
De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.
Hu, L.; Wu, H.; Cui, Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 2011, 36, 760–765.
Madaria, A. R; Kumar A.; Zhou, C. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 2011, 22, 245201.
Lee, J.; Lee, P.; Lee, H.; Lee, D.; Lee, S.; Ko, S. H. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 2012, 4, 6408–6414.
Tokuno, T.; Nogi, M.; Karakawa, M.; Jiu, J.; Nge, T.; Aso, Y.; Suganuma, K. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 2011, 4, 1215–1222.
Mayousse, C.; Celle, C.; Moreau, E.; Mainguet, J.; Carella, A.; Simonato, J. Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors. Nanotechnology 2013, 24, 215501.
Coskun, S.; Ates, E. S.; Unalan, H. E. Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 2013, 24, 125202.
Gaynor, W.; Lee, J.; Peumans, P. Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes. ACS Nano 2009, 4, 30–34.
Gaskell, J. M.; Sheel, D. W. Deposition of indium tin oxide by atmospheric pressure chemical vapour deposition. Thin Solid Films 2012, 520, 4110–4113.
Kim, T.; Canlier, A.; Kim, G.; Choi, J.; Park, M.; Han, S. Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS Appl. Mater. Inter. 2013, 5, 788–794.
Cronin, J. P.; Trosky, M.; Agrawal, A. Reduction of haze in tin oxide transparent conductive coatings on glass. US Patent, 6,268,059 B1, 2001.
Hecht, D. S.; Thomas, D.; Hu, L.; Ladous, C.; Lam, T.; Park, Y.; Irvin, G.; Drzaic, P. Carbon-nanotube film on plastic as transparent electrode for resistive touch screens. J. Soc. Inf. Display 2009, 17, 941–946.
Yamada, T.; Ishihara, M.; Hasegawa, M. Large area coating of graphene at low temperature using a roll-to-roll microwave plasma chemical vapor deposition. Thin Solid Films 2013, 532, 89–93.
Wu, J.; Agrawal, M.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 2010, 4, 43–48.
Katagiri, K.; Hunakubo, T. Metal nanowires, method for producing same, transparent conductor and touch panel. US Patent Appl., 20120255762 A1, 2012.
Preston, C.; Xu, Y.; Han, X.; Munday, J. N.; Hu, L. Optical haze of transparent and conductive silver nanowire films. Nano Res. 2013, 6, 461–468.
Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168.
Jiu, J.; Murai, K.; Kim, D.; Kim, K.; Suganuma, K. Preparation of Ag nanorods with high yield by polyol process. Mater. Chem. Phys. 2009, 114, 333–338.
Lee, J.; Lee, P.; Lee, D.; Lee, S.; Ko, S. H. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst. Growth Des. 2012, 12, 5598–5605
Bergin, S. M.; Chen, Y.; Rathmell, A. R.; Charbonneau, P.; Li, Z.; Wiley, B. J. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 2012, 4, 1996–2004.
Groep, J.; Spinelli, P.; Polman, A. Transparent conducting silver nanowire networks. Nano Lett. 2012, 12, 3138–3144.
Kottmann, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S. Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B 2001, 64, 235402
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Araki, T., Jiu, J., Nogi, M. et al. Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method. Nano Res. 7, 236–245 (2014). https://doi.org/10.1007/s12274-013-0391-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-013-0391-x