Nanocrystal-semiconductor interface: Atomic-resolution cross-sectional transmission electron microscope study of lead sulfide nanocrystal quantum dots on crystalline silicon

Abstract

We report on a cross-sectional high resolution transmission electron microscope study of lead sulfide nanocrystal quantum dots (NCQDs) dispersed on electron-transparent silicon nanopillars that enables nearly atomically-resolved simultaneous imaging of the entire composite: the quantum dot, the interfacial region, and the silicon substrate. Considerable richness in the nanocrystal shape and orientation with respect to the substrate lattice is observed. The average NCQD-substrate separation is found to be significantly smaller than the length of the ligands on the NCQDs. Complementary photoluminescence measurements show that light emission from PbS NCQDs on silicon is effectively quenched which we attribute to intrinsic mechanisms of energy and charge transfer from PbS NCQDs to Si.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Anikeeva, P. O.; Halpert, J. E.; Bawendi, M. G.; Bulović, V. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 2009, 9, 2532–2536.

    Article  Google Scholar 

  2. [2]

    McDonald, S. A.; Konstantatos, G.; Zhang, S.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater. 2005, 4, 138–142.

    Article  Google Scholar 

  3. [3]

    Foell, C. A.; Schelew, E.; Qiao, H.; Abel, K. A.; Hughes, S.; van Veggel, F. C. J. M.; Young, J. F. Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits. Opt. Express 2012, 20, 10453–10469.

    Article  Google Scholar 

  4. [4]

    Lodahl, P.; van Driel, A.; Nikolaev, I. S.; Irman, A.; Overgaag, K.; Vanmaekelbergh, D.; Vos, W. L. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 2004, 430, 654–657.

    Article  Google Scholar 

  5. [5]

    Talapin, D. V.; Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 2005, 310, 86–89.

    Article  Google Scholar 

  6. [6]

    Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

    Article  Google Scholar 

  7. [7]

    Chan, W. C. W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

    Article  Google Scholar 

  8. [8]

    Nozik, A. J. Quantum dot solar cells. Physica E 2002, 14, 115–120.

    Article  Google Scholar 

  9. [9]

    Nozik, A. J. Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett. 2010, 10, 2735–2741.

    Article  Google Scholar 

  10. [10]

    Tisdale, W. A.; Zhu, X.-Y. Artificial atoms on semiconductor surfaces. Proc. Natl. Acad. Sci. USA 2011, 108, 965–970.

    Article  Google Scholar 

  11. [11]

    Lu, S.; Madhukar, A. Nonradiative resonant excitation transfer from nanocrystal quantum dots to adjacent quantum channels. Nano Lett. 2007, 7, 3443–3451.

    Article  Google Scholar 

  12. [12]

    Achermann, M.; Petruska, M. A.; Kos, S.; Smith, D. L.; Koleske, D. D.; Klimov, V. I. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 2004, 429, 642–646.

    Article  Google Scholar 

  13. [13]

    Dorn, A.; Strasfeld, D. B.; Harris, D. K.; Han, H-S.; Bawendi, M. G. Using nanowires to extract excitons from a nanocrystal solid. ACS Nano 2011, 5, 9028–9033.

    Article  Google Scholar 

  14. [14]

    Brokmann, X.; Coolen, L.; Dahan, M.; Hermier, J. P. Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission. Phys. Rev. Lett. 2004, 93, 107403.

    Article  Google Scholar 

  15. [15]

    Konkar, A.; Lu, S.; Madhukar, A.; Hughes, S. M.; Alivisatos, A. P. Semiconductor nanocrystal quantum dots on single crystal semiconductor substrates: High resolution transmission electron microscopy. Nano Lett. 2005, 5, 969–973.

    Article  Google Scholar 

  16. [16]

    Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 1995, 270, 1335–1338.

    Article  Google Scholar 

  17. [17]

    Lingley, Z.; Lu, S.; Madhukar, A. A high quantum efficiency preserving approach to ligand exchange on lead sulfide quantum dots and interdot resonant energy transfer. Nano Lett. 2011, 11, 2887–2891.

    Article  Google Scholar 

  18. [18]

    Steckel, J. S.; Coe-Sullivan, S.; Bulović, V.; Bawendi, M. G. 1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv. Mater. 2003, 15, 1862–1866.

    Article  Google Scholar 

  19. [19]

    Lu, S.; Lingley, Z.; Asano, T.; Harris, D.; Barwicz, T.; Guha, S.; Madhukar, A. Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: Toward a new solar cell paradigm. Nano Lett. 2009, 9, 4548–4552.

    Article  Google Scholar 

  20. [20]

    Hines, M. A.; Scholes, G. D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 2003, 15, 1844–1849.

    Article  Google Scholar 

  21. [21]

    Laermer, F.; Schilp, A. Method of anisotropically etching silicon. US Patent 5,501,893, March 26, 1996.

  22. [22]

    Dimitrov, A. S.; Nagayama, K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 1996, 12, 1303–1311.

    Article  Google Scholar 

  23. [23]

    Malm, J. O.; O’Keefe, M. A. Deceptive “lattice spacings” in high-resolution micrographs of metal nanoparticles. Ultramicroscopy 1997, 68, 13–23.

    Article  Google Scholar 

  24. [24]

    Fraundorf, P.; Qin, W.; Moeck, P.; Mandell, E. Making sense of nanocrystal lattice fringes. J. Appl. Phys. 2005, 98, 114308.

    Article  Google Scholar 

  25. [25]

    Egerton, R. F. Control of radiation damage in the TEM. Ultramicroscopy 2013, 127, 100–108.

    Article  Google Scholar 

  26. [26]

    Strasfeld, D.B.; Dorn, A.; Wager, D. D.; Bawendi, M. G. Imaging Schottky barriers and ohmic contacts in PbS quantum dot devices. Nano Lett. 2012, 12, 569–575.

    Article  Google Scholar 

  27. [27]

    Quintero-Torres, R.; Foell, C. A.; Pichaandi, J.; van Veggel, F. C. J. M.; Young, J. F. Photoluminescence dynamics in solid formulations of colloidal PbSe quantum dots: Three-dimensional versus two-dimensional films. Appl. Phys. Lett. 2012, 101, 121904.

    Article  Google Scholar 

  28. [28]

    Förster, T. Transfer mechanisms of electronic excitation. Discuss (10th Spiers Memorial Lecture). Faraday Soc. 1959, 27, 7–17.

    Article  Google Scholar 

  29. [29]

    Andreakou, P.; Brossard, M.; Bernechea, M.; Konstantatos, G.; Lagoudakis, P. Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: The road to hybrid photovoltaics. Proc. SPIE 2012, 8256, 82561L.

    Article  Google Scholar 

  30. [30]

    Hyun, B.-R.; Zhong, Y.-W.; Bartnik, A. C.; Sun, L.; Abruña, H. D.; Wise, F. W.; Goodreau, J. D.; Matthews, J. R.; Leslie, T. M.; Borrelli, N. F. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano 2008, 2, 2206–2212.

    Article  Google Scholar 

  31. [31]

    Jasieniak, J.; Califano, M.; Watkins, S. E. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 2011, 5, 5888–5902.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anupam Madhukar.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lingley, Z., Mahalingam, K., Lu, S. et al. Nanocrystal-semiconductor interface: Atomic-resolution cross-sectional transmission electron microscope study of lead sulfide nanocrystal quantum dots on crystalline silicon. Nano Res. 7, 219–227 (2014). https://doi.org/10.1007/s12274-013-0389-4

Download citation

Keywords

  • nanocrystal quantum dots
  • semiconductor substrate
  • interface atomic structure
  • high resolution transmission electron microscopy
  • energy and charge transfer
  • solar cells