Nano Research

, Volume 7, Issue 1, pp 132–143 | Cite as

Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates

  • Xing Yi Ling
  • Ruoxue Yan
  • Sylvia Lo
  • Dat Tien Hoang
  • Chong Liu
  • Melissa A. Fardy
  • Sher Bahadar Khan
  • Abdullah M. Asiri
  • Salem M. Bawaked
  • Peidong Yang
Research Article


A novel Ag-alumina hybrid surface-enhanced Raman spectroscopy (SERS) platform has been designed for the spectroscopic detection of surface reactions in the steady state. Single crystalline and faceted silver (Ag) nanoparticles with strong light scattering were prepared in large quantity, which enables their reproducible self-assembly into large scale monolayers of Raman sensor arrays by the Langmuir-Blodgett technique. The close packed sensor film contains high density of sub-nm gaps between sharp edges of Ag nanoparticles, which created large local electromagnetic fields that serve as “hot spots” for SERS enhancement. The SERS substrate was then coated with a thin layer of alumina by atomic layer deposition to prevent charge transfer between Ag and the reaction system. The photocatalytic water splitting reaction on a monolayer of anatase TiO2 nanoplates decorated with Pt co-catalyst nanoparticles was employed as a model reaction system. Reaction intermediates of water photo-oxidation were observed at the TiO2/solution interface under UV irradiation. The surface-enhanced Raman vibrations corresponding to peroxo, hydroperoxo and hydroxo surface intermediate species were observed on the TiO2 surface, suggesting that the photo-oxidation of water on these anatase TiO2 nanosheets may be initiated by a nucleophilic attack mechanism.


surface-enhanced Raman spectroscopy water splitting reaction reaction intermediates Ag nanocrystals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_380_MOESM1_ESM.pdf (673 kb)
Supplementary material, approximately 675 KB.


  1. [1]
    Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661.CrossRefGoogle Scholar
  2. [2]
    Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.CrossRefGoogle Scholar
  3. [3]
    Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.CrossRefGoogle Scholar
  4. [4]
    Maeda, K.; Xiong, A. K.; Yoshinaga, T.; Ikeda, T.; Sakamoto, N.; Hisatomi, T.; Takashima, M.; Lu, D. L.; Kanehara, M.; Setoyama, T., et al. Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. Angew. Chem. Int. Ed. 2010, 122, 4190–4193.CrossRefGoogle Scholar
  5. [5]
    Kuykendall, T.; Ulrich, P.; Aloni, S.; Yang, P. D. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater. 2007, 6, 951–956.CrossRefGoogle Scholar
  6. [6]
    Sivasankar, N.; Weare, W. W.; Frei, H. Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 2011, 133, 12976–12979.CrossRefGoogle Scholar
  7. [7]
    Mattioli, G.; Filippone, F.; Amore Bonapasta, A. Reaction intermediates in the photoreduction of oxygen molecules at the (101) TiO2 (anatase) surface. J. Am. Chem. Soc. 2006, 128, 13772–13780.CrossRefGoogle Scholar
  8. [8]
    Imanishi, A.; Okamura, T.; Ohashi, N.; Nakamura, R.; Nakato, Y. Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: Dependence on solution pH. J. Am. Chem. Soc. 2007, 129, 11569–11578.CrossRefGoogle Scholar
  9. [9]
    Nakamura, R.; Nakato, Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J. Am. Chem. Soc. 2004, 126, 1290–1298.CrossRefGoogle Scholar
  10. [10]
    Tian, Z. Q.; Ren, B.; Chen, Y. X.; Zou, S. Z.; Mao, B. W. Probing electrode/electrolyte interfacial structure in the potential region of hydrogen evolution by Raman spectroscopy. J. Chem. Soc., Faraday Trans. 1996, 92, 3829–3838.CrossRefGoogle Scholar
  11. [11]
    Niaura, G. Surface-enhanced Raman spectroscopic observation of two kinds of adsorbed OH ions at copper electrode. Electrochim. Acta 2000, 45, 3507–3519.CrossRefGoogle Scholar
  12. [12]
    Heck, K. N.; Janesko, B. G.; Scuseria, G. E.; Halas, N. J.; Wong, M. S. Observing metal-catalyzed chemical reactions in situ using surface-enhanced Raman spectroscopy on Pd-Au nanoshells. J. Am. Chem. Soc. 2008, 130, 16592–16600.CrossRefGoogle Scholar
  13. [13]
    Zou, S. Z.; Williams, C. T.; Chen, E. K. Y.; Weaver, M. J. Surface-enhanced Raman scattering as a ubiquitous vibrational probe of transition-metal interfaces: Benzene and related chemisorbates on Palladium and Rhodium in aqueous solution. J. Phys. Chem. B 1998, 102, 9039–9049.CrossRefGoogle Scholar
  14. [14]
    Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Park, J. Y.; Li, Y. M.; Bluhm, H.; Bratlie, K. M.; Zhang, T. F.; Somorjai, G. A. A reactive oxide overlayer on Rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectron spectroscopy. Angew. Chem. Int. Ed. 2008, 47, 8893–8896.CrossRefGoogle Scholar
  15. [15]
    Dolamic, I.; Bürgi, T. Photoassisted decomposition of malonic acid on TiO2 studied by in situ attenuated total reflection infrared spectroscopy. J. Phys. Chem. B 2006, 110, 14898–14904.CrossRefGoogle Scholar
  16. [16]
    Mojet, B. L.; Ebbesen, S. D.; Lefferts, L. Light at the interface: The potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water. Chem. Soc. Rev. 2010, 39, 4643–4655.CrossRefGoogle Scholar
  17. [17]
    Chen, T.; Feng, Z. C.; Wu, G. P.; Shi, J. Y.; Ma, G. J.; Ying, P. L.; Li, C. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ fourier transform IR and time-resolved IR spectroscopy. J. Phys. Chem. C 2007, 111, 8005–8014.CrossRefGoogle Scholar
  18. [18]
    Brownson, J. R. S.; Tejedor-Tejedor, M. I.; Anderson, M. A. FTIR spectroscopy of alcohol and formate interactions with mesoporous TiO2 surfaces. J. Phys. Chem. B 2006, 110, 12494–12499.CrossRefGoogle Scholar
  19. [19]
    Cremer, P. S.; Su, X. C.; Shen, Y. R.; Somorjai, G. A. Hydrogenation and dehydrogenation of propylene on Pt(111) studied by sum frequency generation from UHV to atmospheric pressure. J. Phys. Chem. 1996, 100, 16302–16309.CrossRefGoogle Scholar
  20. [20]
    Tinnemans, S. J.; Mesu, J. G.; Kervinen, K.; Visser, T.; Nijhuis, T. A.; Beale, A. M.; Keller, D. E.; van der Eerden, A. M. J.; Weckhuysen, B. M. Combining operando techniques in one spectroscopic-reaction cell: New opportunities for elucidating the active site and related reaction mechanism in catalysis. Catal. Today 2006, 113, 3–15.CrossRefGoogle Scholar
  21. [21]
    Wang, Y. M.; Wöll, C. Chemical reactions on metal oxide surfaces investigated by vibrational spectroscopy. Surf. Sci. 2009, 603, 1589–1599.CrossRefGoogle Scholar
  22. [22]
    Fan, F. T.; Feng, Z. C.; Li, C. UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials. Acc. Chem. Res. 2010, 43, 378–387.CrossRefGoogle Scholar
  23. [23]
    Weckhuysen, B. M. Snapshots of a working catalyst: Possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chem. Commun. 2002, 97–110.Google Scholar
  24. [24]
    Bañares, M. A. Operando methodology: Combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal. Today 2005, 100, 71–77.CrossRefGoogle Scholar
  25. [25]
    Foster, A. J.; Lobo, R. F. Identifying reaction intermediates and catalytic active sites through in situ characterization techniques. Chem. Soc. Rev. 2010, 39, 4783–4793.CrossRefGoogle Scholar
  26. [26]
    Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667.CrossRefGoogle Scholar
  27. [27]
    Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.CrossRefGoogle Scholar
  28. [28]
    Xu, H. X.; Bjerneld, E. J.; Käll, M.; Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 1999, 83, 4357–4360.CrossRefGoogle Scholar
  29. [29]
    Rycenga, M.; McLellan, J. M.; Xia, Y. N. Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv. Mater. 2008, 20, 2416–2420.CrossRefGoogle Scholar
  30. [30]
    Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.CrossRefGoogle Scholar
  31. [31]
    Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 885–897.CrossRefGoogle Scholar
  32. [32]
    Tao, A.; Sinsermsuksakul, P.; Yang, P. D. Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2007, 2, 435–440.CrossRefGoogle Scholar
  33. [33]
    Camden, J. P.; Dieringer, J. A.; Wang, Y. M.; Masiello, D. J.; Marks, L. D.; Schatz, G. C.; Van Duyne, R. P. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 2008, 130, 12616–12617.CrossRefGoogle Scholar
  34. [34]
    Camden, J. P.; Dieringer, J. A.; Zhao, J.; Van Duyne, R. P. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc. Chem. Res. 2008, 41, 1653–1661.CrossRefGoogle Scholar
  35. [35]
    Yan, B.; Thubagere, A.; Premasiri, W. R.; Ziegler, L. D.; Dal Negro, L.; Reinhard, B. M. Engineered SERS substrates with multiscale signal enhancement: Nanoplarticle cluster arrays. ACS Nano 2009, 3, 1190–1202.CrossRefGoogle Scholar
  36. [36]
    Lassiter, J. B.; Aizpurua, J.; Hernandez, L. I.; Brandl, D. W.; Romero, I.; Lal, S.; Hafner, J. H.; Nordlander, P.; Halas, N. J. Close encounters between two nanoshells. Nano Lett. 2008, 8, 1212–1218.CrossRefGoogle Scholar
  37. [37]
    Henzie, J.; Andrews, S. C.; Ling, X. Y.; Li, Z. Y.; Yang, P. D. Oriented assembly of polyhedral plasmonic nanoparticle clusters. Proc. Natl. Acad. Sci. USA 2013, 110, 6640–6645.CrossRefGoogle Scholar
  38. [38]
    Mulvihill, M.; Tao, A.; Benjauthrit, K.; Arnold, J.; Yang, P. D. Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water. Angew. Chem. Int. Ed. 2008, 120, 6556–6560.CrossRefGoogle Scholar
  39. [39]
    McLellan, J. M.; Siekkinen, A.; Chen, J. Y.; Xia, Y. N. Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem. Phys. Lett. 2006, 427, 122–126.CrossRefGoogle Scholar
  40. [40]
    Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc. 2010, 132, 268–274.CrossRefGoogle Scholar
  41. [41]
    Camargo, P. H. C.; Rycenga, M.; Au, L.; Xia, Y. N. Isolating and probing the hot spot formed between two silver nanocubes. Angew. Chem. Int. Ed. 2009, 48, 2180–2184.CrossRefGoogle Scholar
  42. [42]
    Hardcastle, F. D.; Ishihara, H.; Sharma, R.; Biris, A. S. Photoelectroactivity and Raman spectroscopy of anodized titania (TiO2) photoactive water-splitting catalysts as a function of oxygen-annealing temperature. J. Mater. Chem. 2011, 21, 6337–6345.CrossRefGoogle Scholar
  43. [43]
    Yang, C. C.; Yu, Y. H.; van der Linden, B.; Wu, J. C. S.; Mul, G. Artificial photosynthesis over crystalline TiO2-based catalysts: Fact or fiction? J. Am. Chem. Soc. 2010, 132, 8398–8406.CrossRefGoogle Scholar
  44. [44]
    Selloni, A. Crystal growth: Anatase shows its reactive side. Nat. Mater. 2008, 7, 613–615.CrossRefGoogle Scholar
  45. [45]
    D’Arienzo, M.; Carbajo, J.; Bahamonde, A.; Crippa, M.; Polizzi, S.; Scotti, R.; Wahba, L.; Morazzoni, F. Photogenerated defects in shape-controlled TiO2 anatase nanocrystals: A probe to evaluate the role of crystal facets in photocatalytic processes. J. Am. Chem. Soc. 2011, 133, 17652–17661.CrossRefGoogle Scholar
  46. [46]
    Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.CrossRefGoogle Scholar
  47. [47]
    Serpone, N.; Martin, J.; Horikoshi, S.; Hidaka, H. Photocatalyzed oxidation and mineralization of C1–C5 linear aliphatic acids in UV-irradiated aqueous titania dispersions-kinetics, identification of intermediates and quantum yields. J. Photochem. Photobiol. A 2005, 169, 235–251.CrossRefGoogle Scholar
  48. [48]
    Ohsaka, T.; Izumi, F.; Fujiki, Y. Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 1978, 7, 321–324.CrossRefGoogle Scholar
  49. [49]
    Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry; Wiley-VCH: Weinheim, 2009.Google Scholar
  50. [50]
    Lin, W. Y.; Frei, H. Photochemical and FT-IR probing of the active site of hydrogen peroxide in Ti silicalite sieve. J. Am. Chem. Soc. 2002, 124, 9292–9298.CrossRefGoogle Scholar
  51. [51]
    Zhang, J.; Li, M. J.; Feng, Z. C.; Chen, J.; Li, C. UV Raman spectroscopic study on TiO2. I. phase transformation at the surface and in the bulk. J. Phys. Chem. B 2006, 110, 927–935.CrossRefGoogle Scholar
  52. [52]
    Nakamura, R.; Imanishi, A.; Murakoshi, K.; Nakato, Y. In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions. J. Am. Chem. Soc. 2003, 125, 7443–7450.CrossRefGoogle Scholar
  53. [53]
    Connor, P. A.; Dobson, K. D.; McQuillan, A. J. Infrared spectroscopy of the TiO2/aqueous solution interface. Langmuir 1999, 15, 2402–2408.CrossRefGoogle Scholar
  54. [54]
    Tao, A.; Sinsermsuksakul, P.; Yang, P. D. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed. 2006, 45, 4597–4601.CrossRefGoogle Scholar
  55. [55]
    Zhang, Y. W.; Grass, M. E.; Habas, S. E.; Tao, F.; Zhang, T. F.; Yang, P. D.; Somorjai, G. A., One-step polyol synthesis and Langmuir-Blodgett monolayer formation of size-tunable monodisperse Rhodium nanocrystals with catalytically active (111) surface structures. J. Phys. Chem. C 2007, 111, 12243–12253.CrossRefGoogle Scholar
  56. [56]
    Tao, A. R.; Huang, J. X.; Yang, P. D. Langmuir-Blodgettry of nanocrystals and nanowires. Acc. Chem. Res. 2008, 41, 1662–1673.CrossRefGoogle Scholar
  57. [57]
    Song, H.; Kim, F.; Connor, S.; Somorjai, G. A.; Yang, P. D. Pt nanocrystals: Shape control and Langmuir-Blodgett monolayer formation. J. Phys. Chem. B 2005, 109, 188–193.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xing Yi Ling
    • 1
  • Ruoxue Yan
    • 1
  • Sylvia Lo
    • 1
  • Dat Tien Hoang
    • 1
  • Chong Liu
    • 1
  • Melissa A. Fardy
    • 1
  • Sher Bahadar Khan
    • 2
  • Abdullah M. Asiri
    • 2
  • Salem M. Bawaked
    • 2
  • Peidong Yang
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations