Nano Research

, Volume 7, Issue 1, pp 104–109 | Cite as

Fabrication of periodically aligned vertical single-crystalline anatase TiO2 nanotubes with perfect hexagonal open-ends using chemical capping materials

Research Article


A vertically aligned anatase TiO2 (A-TiO2) nanotube array has been fabricated by coating a ZnO nanorod (NR) template with a TiO2 precursor solution. After coating, the ZnO NR cores were selectively etched in an acidic environment to form TiO2 nanotubes (NTs). More specifically, after growing the ZnO NRs via a hydrothermal method, one drop of the TiO2 precursor solution was cast to coat the ZnO NRs, the tops of which were previously covered with chemical capping materials by electrostatic interaction, and then the sample was sintered. Finally, the sample was immersed in an acidic solution resulting in selective etching of the ZnO NR cores. Thus, only TiO2 NTs remained on the substrate. The capping material is effectively used to create a perfect, hexagonal open-ended TiO2 NT array, which interestingly extends onset absorption towards the visible region.


TiO2 nanotubes chemical capping material ZnO nanorod template laser interference lithography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_377_MOESM1_ESM.pdf (1.4 mb)
Supplementary material, approximately 1.11 MB.


  1. [1]
    Ding, Y. H.; Zhang, P.; Long, Z. L.; Jiang, Y.; Xu, F.; Lei, J. G. Fabrication and photocatalytic property of TiO2 nanofibers. J. Sol-Gel. Sci. Technol. 2008, 46, 176–179.CrossRefGoogle Scholar
  2. [2]
    Pehkonen, S. O.; Siefert, R.; Erel, Y.; Webb, S.; Hoffman, M. R. Photoreduction of iron oxyhydroxides in the presence of important atmospheric oxygen compounds. Environ. Sci. Technol. 1993, 27, 2056–2062.CrossRefGoogle Scholar
  3. [3]
    Carraway, E. R.; Hoffman, A. J.; Hoffman, M. R. Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. Environ. Sci. Technol. 1994, 28, 786–793.CrossRefGoogle Scholar
  4. [4]
    Miao, L.; Tanemura, S.; Toh, S. Kaneko, K.; Tanemura, M. Fabrication, characterization and Raman study of anatase-TiO2 nanorods by a heating-sol-gel template process. J. Cryst. Growth 2004, 264, 246–252.CrossRefGoogle Scholar
  5. [5]
    Chemseddine, A.; Moritz, T. Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem. 1999, 1999, 235–245.CrossRefGoogle Scholar
  6. [6]
    Tang, H.; Prasad, K.; Sanjinés, R.; Lévy, F. TiO2 anatase thin films as gas sensor. Sensor. Actuat. B 1995, 26, 71–75.CrossRefGoogle Scholar
  7. [7]
    Fujishima, A.; Honda, K. Eletrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.CrossRefGoogle Scholar
  8. [8]
    Albu, S. P.; Ghicov, A.; Macak, J. M.; Hahn, R.; Schmuki, P. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalyttic applications. Nano Lett. 2007, 7, 1286–1289.CrossRefGoogle Scholar
  9. [9]
    Chen, D. H.; Huang, F. Z.; Cheng, Y.-B.; Caruso, R. A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Adv. Mater. 2009, 21, 2206–2210.CrossRefGoogle Scholar
  10. [10]
    Gerhardt, L. C.; Jell, G. M. R.; Boccaccini, A. R. Titanium dioxide (TiO2) nanoparticles filled poly(D,L lactic acid) (PDLLA) matrix composites for bone tissue engineering. J. Mater Sci: Mater. Med. 2007, 18, 1287–1298.Google Scholar
  11. [11]
    Lakshmi, B. B.; Patrissi, C. J.; Martin, C. R. Sol-gel template synthesis of semiconductor oxide micro- and nanostructures. Chem. Mater. 1997, 9, 2544–2550.CrossRefGoogle Scholar
  12. [12]
    Liu, S. M.; Gan, L. M.; Liu, L. H.; Zhang, W. D.; Zeng, H. C. Synthesis of single-crystalline TiO2 nanotubes. Chem. Mater. 2002, 14, 1391–1397.CrossRefGoogle Scholar
  13. [13]
    Lai, Y. K.; Sun, L.; Chen, Y. C.; Zhuang, H. F.; Lin, C. J.; Chin, J. W. Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. J. Electrochem. Soc. 2006, 153, D123–D127.CrossRefGoogle Scholar
  14. [14]
    Zhang, M.; Bando, Y.; Wada, K. Sol-gel template preparation of TiO2 nanotubes and nanorods. J. Mater. Sci. Lett. 2001, 20, 167–170.CrossRefGoogle Scholar
  15. [15]
    Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006, 6, 215–218.CrossRefGoogle Scholar
  16. [16]
    Lee, J.-H.; Leu, I.-C.; Hsu, M.-C.; Chung, Y.-W.; Hon, M.-H. Fabrication of aligned TiO2 one-dimensional nanostructured arrays ujsing a one-step templating solution approach. J. Phys. Chem. B 2005, 109, 13056–13059.CrossRefGoogle Scholar
  17. [17]
    Qiu, J. J.; Yu, W. D.; Gao, X. D.; Li, X. M. Sol-gel assisted ZnO nanorod array template to synthesize TiO2 nanotube arrays. Nanotechnology 2006, 17, 4695.CrossRefGoogle Scholar
  18. [18]
    Kim, K. S.; Jeong, H.; Jeong, M. S.; Jung, G. Y. Polymer-templated hydrothermal growth of vertically aligned single-crystal ZnO nanorods and morphological transformations using structural polarity. Adv. Funct. Mater. 2010, 20, 3055–3063.CrossRefGoogle Scholar
  19. [19]
    Andeen, D.; Kim, J. H.; Lange, F. F.; Goh, G. K. L.; Tripathy, S. Lateral epitaxial overgrowth of ZnO in water at 90 °C. Adv. Funct. Mater. 2006, 16, 799–804.CrossRefGoogle Scholar
  20. [20]
    Park, J.; Bauer, S.; Mark, K. V. D.; Schmuki, P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 2007, 7, 1686–1691.CrossRefGoogle Scholar
  21. [21]
    Law, M.; Greene, L. E.; Radenovic, A.; Kuykendall, T.; Liphardt, Jan.; Yang, P. D. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 2006, 110, 22652–22663.CrossRefGoogle Scholar
  22. [22]
    Joint Committee on Power Diffraction Standards, Film Diffraction File (no. JCPDS-21-1272), (ICSD data.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
  2. 2.Department of Chemistry and Interdisciplinary Program of Integrated BiotechnologySogang UniversitySeoulRepublic of Korea
  3. 3.Department of General Dentistry, College of DentistryYonsei UniversitySeoulRepublic of Korea

Personalised recommendations