Advertisement

Nano Research

, Volume 7, Issue 1, pp 1–62 | Cite as

Evaluating the performance of nanostructured materials as lithium-ion battery electrodes

  • Mark J. Armstrong
  • Colm O’Dwyer
  • William J. Macklin
  • Justin. D. Holmes
Review Article

Abstract

The performance of the lithium-ion cell is heavily dependent on the ability of the host electrodes to accommodate and release Li+ ions from the local structure. While the choice of electrode materials may define parameters such as cell potential and capacity, the process of intercalation may be physically limited by the rate of solid-state Li+ diffusion. Increased diffusion rates in lithium-ion electrodes may be achieved through a reduction in the diffusion path, accomplished by a scaling of the respective electrode dimensions. In addition, some electrodes may undergo large volume changes associated with charging and discharging, the strain of which, may be better accommodated through nanostructuring. Failure of the host to accommodate such volume changes may lead to pulverisation of the local structure and a rapid loss of capacity. In this review article, we seek to highlight a number of significant gains in the development of nanostructured lithium-ion battery architectures (both anode and cathode), as drivers of potential next-generation electrochemical energy storage devices.

keywords

lithium ion batteries nanostructuring anodes cathodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657.Google Scholar
  2. [2]
    Stein, A. Energy storage: Batteries take charge. Nat. Nanotechnol. 2011, 6, 262–263.Google Scholar
  3. [3]
    Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.Google Scholar
  4. [4]
    Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946.Google Scholar
  5. [5]
    Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.Google Scholar
  6. [6]
    Song, M.-K.; Park, S.; Alamgir, F. M.; Cho, J.; Liu, M. L. Nanostructured electrodes for lithium-ion and lithium-air batteries: The latest developments, challenges, and perspectives. Mat. Sci. Eng. R 2011, 72, 203–252.Google Scholar
  7. [7]
    Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.Google Scholar
  8. [8]
    Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.Google Scholar
  9. [9]
    Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803.Google Scholar
  10. [10]
    Szczech, J. R.; Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 2011, 4, 56–72.Google Scholar
  11. [11]
    Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003–1039.Google Scholar
  12. [12]
    Chan, C. K.; Ruffo, R.; Hong, S. S.; Huggins, R. A.; Cui, Y. Structural and electrochemical study of the reaction of lithium with silicon nanowires. J. Power Sources 2009, 189, 34–39.Google Scholar
  13. [13]
    Li, J.; Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 2007, 154, A156–A161.Google Scholar
  14. [14]
    Kang, Y.-M.; Lee, S.-M.; Kim, S.-J.; Jeong, G.-J.; Sung, M.-S.; Choi, W.-U.; Kim, S.-S. Phase transitions explanatory of the electrochemical degradation mechanism of Si based materials. Electrochem. Commun. 2007, 9, 959–964.Google Scholar
  15. [15]
    Beattie, S. D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J.-M. Si electrodes for Li-ion batteries-A new way to look at an old problem. J. Electrochem. Soc. 2008, 155, A158–A163.Google Scholar
  16. [16]
    Liu, X. H.; Zheng, H.; Zhong, L.; Huang, S.; Karki, K.; Zhang, L. Q.; Liu, Y.; Kushima, A.; Liang, W. T.; Wang, J. W. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 2011, 11, 3312–3318.Google Scholar
  17. [17]
    Zhang, Q. F.; Zhang, W. X.; Wan, W. H.; Cui, Y.; Wang, E. G. Lithium insertion in silicon nanowires: An ab initio study. Nano Lett. 2010, 10, 3243–3249.Google Scholar
  18. [18]
    Sethuraman, V. A.; Chon, M. J.; Shimshak, M.; Srinivasan, V.; Guduru, P. R. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 2010, 195, 5062–5066.Google Scholar
  19. [19]
    Barth, S.; Hernandez-Ramirez, F.; Holmes, J. D.; Romano-Rodriguez, A. Synthesis and applications of one-dimensional semiconductors. Prog. Mater. Sci. 2010, 55, 563–627.Google Scholar
  20. [20]
    Green, M.; Fielder, E.; Scrosati, B.; Wachtler, M.; Moreno, J. S. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 2003, 6, A75–A79.Google Scholar
  21. [21]
    Yang, H.; Huang, S.; Huang, X.; Fan, F. F.; Liang, W. T.; Liu, X. H.; Chen, L.-Q.; Huang, J. Y.; Li, J.; Zhu, T.; et al. Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 2012, 12, 1953–1958.Google Scholar
  22. [22]
    Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.Google Scholar
  23. [23]
    Laik, B.; Eude, L.; Pereira-Ramos, J.-P.; Cojocaru, C. S.; Pribat, D.; Rouvière, E. Silicon nanowires as negative electrode for lithium-ion microbatteries. Electrochim. Acta 2008, 53, 5528–5532.Google Scholar
  24. [24]
    Kang, K.; Lee, H.-S.; Han, D.-W.; Kim, G.-S.; Lee, D.; Lee, G.; Kang, Y.-M.; Jo, M.-H. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery. Appl. Phys. Lett. 2010, 96, 053110.Google Scholar
  25. [25]
    Ruffo, R.; Hong, S. S.; Chan, C. K.; Huggins, R. A.; Cui, Y. Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C 2009, 113, 11390–11398.Google Scholar
  26. [26]
    Peng, K. Q.; Jie, J. S.; Zhang, W. J.; Lee, S.-T. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 2008, 93, 033105.Google Scholar
  27. [27]
    Nguyen, H. T.; Yao, F.; Zamfir, M. R.; Biswas, C.; So, K. P.; Lee, Y. H.; Kim, S. M.; Cha, S. N.; Kim, J. M.; Pribat, D. Highly interconnected Si nanowires for improved stability Li-ion battery anodes. Adv. Energy Mater. 2011, 1, 1154–1161.Google Scholar
  28. [28]
    Loveridge, M.; Lain, M.; Liu, F.; Coowar, F.; Macklin, B.; Green, M. High performance silicon anode materials for next generation lithium ion batteries. Abstract #12 The 15th International Meeting on Lithium Batteries. The Electrochemical Society 2010.Google Scholar
  29. [29]
    Liu, F.; Lain, M.; Loveridge, M.; Coowar, F.; Macklin, B.; Green, M. Low cost silicon fibres For lithium ion batteries. Abstract #47 The 15th International Meeting on Lithium Batteries. The Electrochemical Society 2010.Google Scholar
  30. [30]
    Huang, R.; Fan, X.; Shen, W. C.; Zhu, J. Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes. Appl. Phys. Lett. 2009, 95, 133119.Google Scholar
  31. [31]
    Ji, L. W.; Zhang, X. W. Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes. Electrochem. Commun. 2009, 11, 1146–1149.Google Scholar
  32. [32]
    Kim, H.; Cho, J. Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. Nano Lett. 2008, 8, 3688–3691.Google Scholar
  33. [33]
    Chan, C. K.; Patel, R. N.; O’Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 2010, 4, 1443–1450.Google Scholar
  34. [34]
    Cui, L.-F.; Ruffo, R.; Chan, C. K.; Peng, H. L.; Cui, Y. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491–495.Google Scholar
  35. [35]
    Yao, Y.; Liu, N.; McDowell, M. T.; Pasta, M.; Cui, Y. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 2012, 5, 7927–7930.Google Scholar
  36. [36]
    McDowell, M. T.; Lee, S. W.; Ryu, I.; Wu, H.; Nix, W. D.; Choi, J. W.; Cui, Y. Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. Nano Lett. 2011, 11, 4018–4025.Google Scholar
  37. [37]
    Ge, M. Y.; Rong, J. P.; Fang, X.; Zhou, C. W. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, 12, 2318–2323.Google Scholar
  38. [38]
    Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847.Google Scholar
  39. [39]
    Song, T.; Xia, J. L.; Lee, J.-H.; Lee, D. H.; Kwon, M.-S.; Choi, J.-M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I.; et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710–1716.Google Scholar
  40. [40]
    Chou, S.-L.; Wang, J.-Z.; Choucair, M.; Liu, H.-K.; Stride, J. A.; Dou, S.-X. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 2010, 12, 303–306.Google Scholar
  41. [41]
    Kim, H.; Seo, M.; Park, M.-H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 2010, 49, 2146–2149.Google Scholar
  42. [42]
    Ma, H.; Cheng, F.; Chen, J.-Y.; Zhao, J.-Z.; Li, C.-S.; Tao, Z.-L.; Liang, J. Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater. 2007, 19, 4067–4070.Google Scholar
  43. [43]
    Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.Google Scholar
  44. [44]
    Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358.Google Scholar
  45. [45]
    Ding, N.; Xu, J.; Yao, Y. X.; Wegner, G.; Lieberwirth, I.; Chen, C. H. Improvement of cyclability of Si as anode for Li-ion batteries. J. Power Sources 2009, 192, 644–651.Google Scholar
  46. [46]
    Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun. 2010, 46, 2025–2027.Google Scholar
  47. [47]
    Hu, Y.-S.; Demir-Cakan, R.; Titirici, M.-M.; Müller, J.-O.; Schlögl, R.; Antonietti, M.; Maier, J. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew. Chem. Int. Ed. 2008, 47, 1645–1649.Google Scholar
  48. [48]
    Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/ carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 2010, 4, 2233–2241.Google Scholar
  49. [49]
    Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 2008, 47, 10151–10154.Google Scholar
  50. [50]
    Zheng, Y.; Yang, J.; Wang, J. L.; NuLi, Y. N. Nano-porous Si/C composites for anode material of lithium-ion batteries. Electrochim. Acta 2007, 52, 5863–5867.Google Scholar
  51. [51]
    Jiang, T.; Zhang, S. C.; Qiu, X. P.; Zhu, W. T.; Chen, L. Q. Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery. Electrochem. Commun. 2007, 9, 930–934.Google Scholar
  52. [52]
    Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334, 75–79.Google Scholar
  53. [53]
    Chan, C. K.; Zhang, X. F.; Cui, Y. High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 2008, 8, 307–309.Google Scholar
  54. [54]
    Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B. Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc. 2004, 151, A698–A702.Google Scholar
  55. [55]
    Laforge, B.; Levan-Jodin, L.; Salot, R.; Billard, A. Study of germanium as electrode in thin-film battery. J. Electrochem. Soc. 2008, 155, A181–A188.Google Scholar
  56. [56]
    Liu, X. H.; Huang, S.; Picraux, S. T.; Li, J.; Zhu, T.; Huang, J. Y. Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: An in situ transmission electron microscopy study. Nano Lett. 2011, 11, 3991–3997.Google Scholar
  57. [57]
    Tan, L. P.; Lu, Z. Y.; Tan, H. T.; Zhu, J. X.; Rui, X. H.; Yan, Q. Y.; Hng, H. H. Germanium nanowires-based carbon composite as anodes for lithium-ion batteries. J. Power Sources 2012, 206, 253–258.Google Scholar
  58. [58]
    Yoon, S.; Park, C.-M.; Sohn, H.-J. Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem. Solid-State Lett. 2008, 11, A42–A45.Google Scholar
  59. [59]
    Ko, Y.-D.; Kang, J.-G.; Lee, G.-H.; Park, J.-G.; Park, K.-S.; Jin, Y.-H.; Kim, D.-W. Sn-induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity. Nanoscale 2011, 3, 3371–3375.Google Scholar
  60. [60]
    Collins, G.; Holmes, J. D. Chemical functionalisation of silicon and germanium nanowires. J. Mater. Chem. 2011, 21, 11052–11069.Google Scholar
  61. [61]
    Seo, M.-H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 2011, 4, 425–428.Google Scholar
  62. [62]
    Dileo, R. A.; Ganter, M. J.; Landi, B. J.; Raffaelle, R. P. Germanium-single-wall carbon nanotube anodes for lithium ion batteries. J. Mater. Res. 2011, 25, 1441–1446.Google Scholar
  63. [63]
    Cui, G. L.; Gu, L.; Kaskhedikar, N.; van Aken, P. A.; Maier, J. A novel germanium/carbon nanotubes nanocomposite for lithium storage material. Electrochim. Acta 2010, 55, 985–988.Google Scholar
  64. [64]
    Song, T.; Cheng, H.; Choi, H.; Lee, J.; Lee, J.-H.; Han, H.; Lee, D. H.; Yoo, D. S.; Kwon, M.-S.; Choi, J.-M.; et al. Si/Ge double-layered nanotube array as lithium ion battery anode. ACS Nano 2012, 6, 303–309.Google Scholar
  65. [65]
    Park, M.-H.; Cho, Y. H.; Kim, K.; Kim, J.; Liu, M. L.; Cho, J. Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Angew. Chem. Int. Ed. 2011, 50, 9647–9650.Google Scholar
  66. [66]
    Park, M.-H.; Kim, K.; Kim, J.; Cho, J. Flexible dimensional control of high-capacity Li-ion-battery anodes: From 0D hollow to 3D porous germanium nanoparticle assemblies. Adv. Mater. 2010, 22, 415–418.Google Scholar
  67. [67]
    Seng, K. H.; Park, M.-H.; Guo, Z. P.; Liu, H. K.; Cho, J. Self-assembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery. Angew. Chem. Int. Ed. 2012, 51, 5657–5661.Google Scholar
  68. [68]
    Yang, L. C.; Gao, Q. S.; Li, L.; Tang, Y.; Wu, Y. P. Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction. Electrochem. Commun. 2010, 12, 418–421.Google Scholar
  69. [69]
    Wang, X.-L.; Han, W.-Q.; Chen, H. Y.; Bai, J. M.; Tyson, T. A.; Yu, X.-Q.; Wang, X.-J.; Yang, X.-Q. Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life. J. Am. Chem. Soc. 2011, 133, 20692–20695.Google Scholar
  70. [70]
    Deng, D.; Kim, M. G.; Lee, J. Y.; Cho, J. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci. 2009, 2, 818–837.Google Scholar
  71. [71]
    Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. D. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 2012, 4, 2526–2542.Google Scholar
  72. [72]
    Wang, Z. Y.; Zhou, L.; Lou, X. W. D. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.Google Scholar
  73. [73]
    Bazin, L.; Mitra, S.; Taberna, P. L.; Poizot, P.; Gressier, M.; Menu, M. J.; Barnabé, A.; Simon, P.; Tarascon, J.-M. High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries. J. Power Sources 2009, 188, 578–582.Google Scholar
  74. [74]
    Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A.; et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.Google Scholar
  75. [75]
    Ko, Y.-D.; Kang, J.-G.; Park, J.-G.; Lee, S.; Kim, D.-W. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries. Nanotechnology 2009, 20, 455701.Google Scholar
  76. [76]
    Meduri, P.; Pendyala, C.; Kumar, V.; Sumanasekera, G. U.; Sunkara, M. K. Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett. 2009, 9, 612–616.Google Scholar
  77. [77]
    Park, M.-S.; Kang, Y.-M.; Wang, G.-X.; Dou, S.-X.; Liu, H.-K. The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 2008, 18, 455–461.Google Scholar
  78. [78]
    Liu, J. P.; Li, Y. Y.; Huang, X. T.; Ding, R. M.; Hu, Y. Y.; Jiang, J.; Liao, L. Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J. Mater. Chem. 2009, 19, 1859–1864.Google Scholar
  79. [79]
    Lou, X. W.; Li, C. M.; Archer, L. A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 2009, 21, 2536–2539.Google Scholar
  80. [80]
    Chou, S.-L.; Wang, J.-Z.; Zhong, C.; Rahman, M. M.; Liu, H.-K.; Dou, S.-X. A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochim. Acta 2009, 54, 7519–7524.Google Scholar
  81. [81]
    Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties. Chem. Mater. 2008, 20, 6562–6566.Google Scholar
  82. [82]
    Qiao, H.; Zheng, Z.; Zhang, L. Z.; Xiao, L. F. SnO2@C core-shell spheres: Synthesis, characterization, and performance in reversible Li-ion storage. J. Mater. Sci. 2008, 43, 2778–2784.Google Scholar
  83. [83]
    Liu, J.; Li, W.; Manthiram, A. Dense core-shell structured SnO2/C composites as high performance anodes for lithium ion batteries. Chem. Commun. 2010, 46, 1437–1439.Google Scholar
  84. [84]
    Chen, J. S.; Cheah, Y. L.; Chen, Y. T.; Jayaprakash, N.; Madhavi, S.; Yang, Y. H.; Lou, X. W. SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. J. Phys. Chem. C 2009, 113, 20504–20508.Google Scholar
  85. [85]
    Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries. Adv. Mater. 2007, 19, 2336–2340.Google Scholar
  86. [86]
    Hassoun, J.; Derrien, G.; Panero, S.; Scrosati, B. A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 2008, 20, 3169–3175.Google Scholar
  87. [87]
    Yu, Y.; Gu, L.; Wang, C. L.; Dhanabalan, A.; van Aken, P. A.; Maier, J. Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew. Chem. Int. Ed. 2009, 48, 6485–6489.Google Scholar
  88. [88]
    Wang, G. X.; Wang, B.; Wang, X. L.; Park, J.; Dou, S. X.; Ahn, H.; Kim, K. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem. 2009, 19, 8378–8384.Google Scholar
  89. [89]
    Yao, J.; Shen, X. P.; Wang, B.; Liu, H. K.; Wang, G. X. In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1849–1852.Google Scholar
  90. [90]
    Du, Z. F.; Yin, X. M.; Zhang, M.; Hao, Q. Y.; Wang, Y. G.; Wang, T. H. In situ synthesis of SnO2/graphene nanocomposite and their application as anode material for lithium ion battery. Mater. Lett. 2010, 64, 2076–2079.Google Scholar
  91. [91]
    Wang, X. Y.; Zhou, X. F.; Yao, K.; Zhang, J. G.; Liu, Z. P. A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 2011, 49, 133–139.Google Scholar
  92. [92]
    Kim, H.; Kim, S.-W.; Park, Y.-U.; Gwon, H.; Seo, D.-H.; Kim, Y.; Kang, K. SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 2010, 3, 813–821.Google Scholar
  93. [93]
    Demir-Cakan, R.; Hu, Y.-S.; Antonietti, M.; Maier, J.; Titrici, M.-M. Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem. Mater. 2008, 20, 1227–1229.Google Scholar
  94. [94]
    Guo, Z. P.; Du, G. D.; Nuli, Y. N.; Hassan, M. F.; Liu, H. K. Ultra-fine porous SnO2 nanopowder prepared via a molten salt process: A highly efficient anode material for lithium-ion batteries. J. Mater. Chem. 2009, 19, 3253–3257.Google Scholar
  95. [95]
    Li, L. M.; Yin, X. M.; Liu, S.; Wang, Y. G.; Chen, L. B.; Wang, T. H. Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem. Commun. 2010, 12, 1383–1386.Google Scholar
  96. [96]
    Ning, J. J.; Dai, Q. Q.; Jiang, T.; Men, K. K.; Liu, D. H.; Xiao, N. R.; Li, C. Y.; Li, D. M.; Liu, B. B.; Zou, B.; et al. Facile synthesis of tin oxide nanoflowers: A potential high-capacity lithium-ion-storage material. Langmuir 2009, 25, 1818–1821.Google Scholar
  97. [97]
    Yin, X. M.; Li, C. C.; Zhang, M.; Hao, Q. Y.; Liu, S.; Chen, L. B.; Wang, T. H. One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. J. Phys. Chem. C 2010, 114, 8084–8088.Google Scholar
  98. [98]
    Ferguson, P. P.; Todd, A. D. W.; Dahn, J. R. Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion batteries. Electrochem. Commun. 2008, 10, 25–31.Google Scholar
  99. [99]
    Ferguson, P. P.; Martine, M. L.; George, A. E.; Dahn, J. R. Studies of tin-transition metal-carbon and tin-cobalt-transition metal-carbon negative electrode materials prepared by mechanical attrition. J. Power Sources 2009, 194, 794–800.Google Scholar
  100. [100]
    Chen, Z. X.; Qian, J. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries. J. Power Sources 2009, 189, 730–732.Google Scholar
  101. [101]
    Hassoun, J.; Panero, S.; Mulas, G.; Scrosati, B. An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries. J. Power Sources 2007, 171, 928–931.Google Scholar
  102. [102]
    Guo, H.; Zhao, H. L.; Jia, X. D. Spherical Sn-Ni-C alloy anode material with submicro/micro complex particle structure for lithium secondary batteries. Electrochem. Commun. 2007, 9, 2207–2211.Google Scholar
  103. [103]
    Ke, F.-S.; Huang, L.; Cai, J.-S.; Sun, S.-G. Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries. Electrochim. Acta 2007, 52, 6741–6747.Google Scholar
  104. [104]
    Zhu, G.-N.; Wang, Y.-G.; Xia, Y.-Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6652–6667.Google Scholar
  105. [105]
    Amine, K.; Belharouak, I.; Chen, Z. H.; Tran, T.; Yumoto, H.; Ota, N.; Myung, S.-T.; Sun, Y.-K. Nanostructured anode material for high-power battery system in electric vehicles. Adv. Mater. 2010, 22, 3052–3057.Google Scholar
  106. [106]
    Lu, X.; Zhao, L.; He, X. Q.; Xiao, R. J.; Gu, L.; Hu, Y.-S.; Li, H.; Wang, Z. X.; Duan, X. F.; Chen, L. Q.; et al. Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy. Adv. Mater. 2012, 24, 3233–3238.Google Scholar
  107. [107]
    Zhu, G.-N.; Liu, H.-J.; Zhuang, J.-H.; Wang, C.-X.; Wang, Y.-G.; Xia, Y.-Y. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ. Sci. 2011, 4, 4016–4022.Google Scholar
  108. [108]
    Jung, H.-G.; Myung, S.-T.; Yoon, C. S.; Son, S.-B.; Oh, K. H.; Amine, K.; Scrosati, B.; Sun, Y.-K. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ. Sci. 2011, 4, 1345–1351.Google Scholar
  109. [109]
    Yu, H. Y.; Zhang, X. F.; Jalbout, A. F.; Yan, X. D.; Pan, X. M.; Xie, H. M.; Wang, R. S. High-rate characteristics of novel anode Li4Ti5O12/polyacene materials for Li-ion secondary batteries. Electrochim. Acta 2008, 53, 4200–4204.Google Scholar
  110. [110]
    Cheng, L.; Yan, J.; Zhu, G.-N.; Luo, J.-Y.; Wang, C.-X.; Xia, Y.-Y. General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J. Mater. Chem. 2010, 20, 595–602.Google Scholar
  111. [111]
    Wang, G. J.; Gao, J.; Fu, L. J.; Zhao, N. H.; Wu, Y. P.; Takamura, T. Preparation and characteristic of carbon-coated Li4Ti5O12 anode material. J. Power Sources 2007, 174, 1109–1112.Google Scholar
  112. [112]
    Yuan, T.; Yu, X.; Cai, R.; Zhou, Y. K.; Shao, Z. P. Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. J. Power Sources 2010, 195, 4997–5004.Google Scholar
  113. [113]
    Cheng, L.; Li, X.-L.; Liu, H.-J.; Xiong, H.-M.; Zhang, P.-W.; Xia, Y.-Y. Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J. Electrochem. Soc. 2007, 154, A692–A697.Google Scholar
  114. [114]
    Liu, H.; Feng, Y.; Wang, K.; Xie, J. Y. Synthesis and electrochemical properties of Li4Ti5O12/C composite by the PVB rheological phase method. J. Phys. Chem. Solids 2008, 69, 2037–2040.Google Scholar
  115. [115]
    Gao, J.; Ying, J. R.; Jiang, C. Y.; Wan, C. R. High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries. J. Power Sources 2007, 166, 255–259.Google Scholar
  116. [116]
    Zhu, N.; Liu, W.; Xue, M. Q.; Xie, Z.; Zhao, D.; Zhang, M. N.; Chen, J. T.; Cao, T. B. Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochim. Acta 2010, 55, 5813–5818.Google Scholar
  117. [117]
    Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Yang, S. D.; Lu, X. J. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries. Nanoscale 2011, 3, 572–574.Google Scholar
  118. [118]
    Hao, Y.-J.; Lai, Q.-Y.; Lu, J.-Z.; Ji, X.-Y. Effects of dopant on the electrochemical properties of Li4Ti5O12 anode materials. Ionics 2007, 13, 369–373.Google Scholar
  119. [119]
    Huang, S. H.; Wen, Z. Y.; Zhu, X. J.; Lin, Z. X. Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries. J. Power Sources 2007, 165, 408–412.Google Scholar
  120. [120]
    Wolfenstine, J.; Allen, J. L. Electrical conductivity and charge compensation in Ta doped Li4Ti5O12. J. Power Sources 2008, 180, 582–585.Google Scholar
  121. [121]
    Qi, Y. L.; Huang, Y. D.; Jia, D. Z.; Bao, S.-J.; Guo, Z. P. Preparation and characterization of novel spinel Li4Ti5O12−xBrx anode materials. Electrochim. Acta 2009, 54, 4772–4776.Google Scholar
  122. [122]
    Wang, Y.-Q.; Gu, L.; Guo, Y.-G.; Li, H.; He, X.-Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L.-J. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874–7879.Google Scholar
  123. [123]
    Wang, Y. G.; Liu, H. M.; Wang, K. X.; Eiji, H.; Wang, Y. R.; Zhou, H. S. Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. J. Mater. Chem. 2009, 19, 6789–6795.Google Scholar
  124. [124]
    Song, M.-S.; Benayad, A.; Choi, Y.-M.; Park, K.-S. Does Li4Ti5O12 need carbon in lithium ion batteries? Carbon-free electrode with exceptionally high electrode capacity. Chem. Commun. 2012, 48, 516–518.Google Scholar
  125. [125]
    Haetge, J.; Hartmann, P.; Brezesinski, K.; Janek, J.; Brezesinski, T. Ordered large-pore mesoporous Li4Ti5O12 thin film electrodes with nanocrystalline framework for high rate rechargeable lithium batteries: Relationships among charge storage, electrical conductivity, and nanoscale structure. Chem. Mater. 2011, 23, 4384–4393.Google Scholar
  126. [126]
    Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Xu, K.; Xia, Y. Y. Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries. J. Mater. Chem. 2010, 20, 6998–7004.Google Scholar
  127. [127]
    Woo, S.-W.; Dokko, K.; Kanamura, K. Preparation and characterization of three dimensionally ordered macroporous Li4Ti5O12 anode for lithium batteries. Electrochim. Acta 2007, 53, 79–82.Google Scholar
  128. [128]
    Zhao, L.; Hu, Y.-S.; Li, H.; Wang, Z. X.; Chen, L. Q. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 2011, 23, 1385–1388.Google Scholar
  129. [129]
    Jiang, C. H.; Zhou, Y.; Honma, I.; Kudo, T.; Zhou, H. S. Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material. J. Power Sources 2007, 166, 514–518.Google Scholar
  130. [130]
    Tang, Y. F.; Yang, L.; Fang, S. H.; Qiu, Z. Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries. Electrochim. Acta 2009, 54, 6244–6249.Google Scholar
  131. [131]
    Jung, H.-G.; Jang, M. W.; Hassoun, J.; Sun, Y.-K.; Scrosati, B. A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nat. Commun. 2011, 2, 516–520.Google Scholar
  132. [132]
    Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P. Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2009, 2, 638–654.Google Scholar
  133. [133]
    Chen, J.; Minett, A. I.; Liu, Y.; Lynam, C.; Sherrell, P.; Wang, C. Y.; Wallace, G. G. Direct growth of flexible carbon nanotube electrodes. Adv. Mater. 2008, 20, 566–570.Google Scholar
  134. [134]
    Yang, S. B.; Song, H. H.; Chen, X. H.; Okotrub, A. V.; Bulusheva, L. G. Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries. Electrochim. Acta 2007, 52, 5286–5293.Google Scholar
  135. [135]
    Chew, S. Y.; Ng, S. H.; Wang, J. Z.; Novák, P.; Krumeich, F.; Chou, S. L.; Chen, J.; Liu, H. K. Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon 2009, 47, 2976–2983.Google Scholar
  136. [136]
    Lee, S. W.; Yabuuchi, N.; Gallant, B. M.; Chen, S.; Kim, B.-S.; Hammond, P. T.; Shao-Horn, Y. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 2010, 5, 531–537.Google Scholar
  137. [137]
    Landi, B. J.; Ganter, M. J.; Schauerman, C. M.; Cress, C. D.; Raffaelle, R. P. Lithium ion capacity of single wall carbon nanotube paper electrodes. J. Phys. Chem. C 2008, 112, 7509–7515.Google Scholar
  138. [138]
    Masarapu, C.; Subramanian, V.; Zhu, H. W.; Wei, B. Q. Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries. Adv. Funct. Mater. 2009, 19, 1008–1014.Google Scholar
  139. [139]
    Wang, X. X.; Wang, J. N.; Chang, H.; Zhang, Y. F. Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries. Adv. Funct. Mater. 2007, 17, 3613–3618.Google Scholar
  140. [140]
    Guo, B. K.; Wang, X. Q.; Fulvio, P. F.; Chi, M. F.; Mahurin, S. M.; Sun, X.-G.; Dai, S. Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv. Mater. 2011, 23, 4661–4666.Google Scholar
  141. [141]
    Ji, L. W.; Zhang, X. W. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology 2009, 20, 155705–155711.Google Scholar
  142. [142]
    Qie, L.; Chen, W.-M.; Wang, Z.-H.; Shao, Q.-G.; Li, X.; Yuan, L.-X.; Hu, X.-L.; Zhang, W.-X.; Huang, Y.-H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.Google Scholar
  143. [143]
    Zhang, J.; Hu, Y.-S.; Tessonnier, J.-P.; Weinberg, G.; Maier, J.; Schlögl, R.; Su, D. S. CNFs@CNTs: Superior carbon for electrochemical energy storage. Adv. Mater. 2008, 20, 1450–1455.Google Scholar
  144. [144]
    Yang, S. B.; Huo, J. P.; Song, H. H.; Chen, X. H. A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries. Electrochim. Acta 2008, 53, 2238–2244.Google Scholar
  145. [145]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.Google Scholar
  146. [146]
    Brownson, D. A. C.; Kampouris, D. K.; Banks, C. E. An overview of graphene in energy production and storage applications. J. Power Sources 2011, 196, 4873–4885.Google Scholar
  147. [147]
    Sun, Y. Q.; Wu, Q.; Shi, G. Q. Graphene based new energy materials. Energy Environ. Sci. 2011, 4, 1113–1132.Google Scholar
  148. [148]
    Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 2011, 4, 668–674.Google Scholar
  149. [149]
    Uthaisar, C.; Barone, V. Edge effects on the characteristics of Li diffusion in graphene. Nano Lett. 2010, 10, 2838–2842.Google Scholar
  150. [150]
    Pollak, E.; Geng, B. S.; Jeon, K.-J.; Lucas, I. T.; Richardson, T. J.; Wang, F.; Kostecki, R. The interaction of Li+ with single-layer and few-layer graphene. Nano Lett. 2010, 10, 3386–3388.Google Scholar
  151. [151]
    Pan, D. Y.; Wang, S.; Zhao, B.; Wu, M. H.; Zhang, H. J.; Wang, Y.; Jiao, Z. Li storage properties of disordered graphene nanosheets. Chem. Mater. 2009, 21, 3136–3142.Google Scholar
  152. [152]
    Lian, P. C.; Zhu, X. F.; Liang, S. Z.; Li, Z.; Yang, W. S.; Wang, H. H. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta 2010, 55, 3909–3914.Google Scholar
  153. [153]
    Bhardwaj, T.; Antic, A.; Pavan, B.; Barone, V.; Fahlman, B. D. Enhanced electrochemical lithium storage by graphene nanoribbons. J. Am. Chem. Soc. 2010, 132, 12556–12558.Google Scholar
  154. [154]
    Guo, P.; Song, H. H.; Chen, X. H. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1320–1324.Google Scholar
  155. [155]
    Yoo, E.; Kim, J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277–2282.Google Scholar
  156. [156]
    Wang, C. Y.; Li, D.; Too, C. O.; Wallace, G. G. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem. Mater. 2009, 21, 2604–2606.Google Scholar
  157. [157]
    Abouimrane, A.; Compton, O. C.; Amine, K.; Nguyen, S. T. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C 2010, 114, 12800–12804.Google Scholar
  158. [158]
    Liu, F.; Song, S. Y.; Xue, D. F.; Zhang, H. J. Folded structured graphene paper for high performance electrode materials. Adv. Mater. 2012, 24, 1089–1094.Google Scholar
  159. [159]
    Yang, S. B.; Feng, X. L.; Zhi, L. J.; Cao, Q.; Maier, J.; Müllen, K. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv. Mater. 2010, 22, 838–842.Google Scholar
  160. [160]
    Wang, K. X.; Li, Z. L.; Wang, Y. G.; Liu, H. M.; Chen, J. S.; Holmes, J.; Zhou, H. S. Carbon nanocages with nanographene shell for high-rate lithium ion batteries. J. Mater. Chem. 2010, 20, 9748–9753.Google Scholar
  161. [161]
    Li, G. D.; Xu, L. Q.; Hao, Q.; Wang, M.; Qian, Y. T. Synthesis, characterization and application of carbon nanocages as anode materials for high-performance lithiumion batteries. RSC Adv. 2012, 2, 284–291.Google Scholar
  162. [162]
    Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–469.Google Scholar
  163. [163]
    Hao, R.; Xing, R. J.; Xu, Z. C.; Hou, Y. L.; Gao, S.; Sun, S. H. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22, 2729–2742.Google Scholar
  164. [164]
    NuLi, Y. N.; Zeng, R.; Zhang, P.; Guo, Z. P.; Liu, H. K. Controlled synthesis of α-Fe2O3 nanostructures and their size-dependent electrochemical properties for lithium-ion batteries. J. Power Sources 2008, 184, 456–461.Google Scholar
  165. [165]
    Larcher, D.; Masquelier, C.; Bonnin, D.; Chabre, Y.; Masson, V.; Leriche, J.-B.; Tarascon, J.-M. Effect of particle size on lithium intercalation into α-Fe2O3. J. Electrochem. Soc. 2003, 150, A133–A139.Google Scholar
  166. [166]
    Reddy, M. V.; Yu, T.; Sow, C.-H.; Shen, Z. X.; Lim, C. T.; Subba Rao, G. V.; Chowdari, B. V. R. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2792–2799.Google Scholar
  167. [167]
    Kim, H. S.; Piao, Y. Z.; Kang, S. H.; Hyeon, T.; Sung, Y.-E. Uniform hematite nanocapsules based on an anode material for lithium ion batteries. Electrochem. Commun. 2010, 12, 382–385.Google Scholar
  168. [168]
    Chen, J. S.; Zhu, T.; Yang, X. H.; Yang, H. G.; Lou, X. W. Top-down fabrication of α-Fe2O3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties. J. Am. Chem. Soc. 2010, 132, 13162–13164.Google Scholar
  169. [169]
    Koo, B.; Xiong, H.; Slater, M. D.; Prakapenka, V. B.; Balasubramanian, M.; Podsiadlo, P.; Johnson, C. S.; Rajh, T.; Shevchenko, E. V. Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett. 2012, 12, 2429–2435.Google Scholar
  170. [170]
    Liu, J. P.; Li, Y. Y.; Fan, H. J.; Zhu, Z. H.; Jiang, J.; Ding, R. M.; Hu, Y. Y.; Huang, X. T. Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: Large-area design and reversible lithium storage. Chem. Mater. 2010, 22, 212–217.Google Scholar
  171. [171]
    Zhu, X. J.; Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ruoff, R. S. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 2011, 5, 3333–3338.Google Scholar
  172. [172]
    Chen, J. S.; Zhang, Y. M.; Lou, X. W. One-pot synthesis of uniform Fe3O4 nanospheres with carbon matrix support for improved lithium storage capabilities. ACS Appl. Mater. Interfaces 2011, 3, 3276–3279.Google Scholar
  173. [173]
    Zhang, W.-M.; Wu, X.-L.; Hu, J.-S.; Guo, Y.-G.; Wan, L.-J. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 2008, 18, 3941–3946.Google Scholar
  174. [174]
    Muraliganth, T.; Vadivel Murugan, A.; Manthiram, A. Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chem. Commun. 2009, 7360–7362.Google Scholar
  175. [175]
    Cui, Z.-M.; Jiang, L.-Y.; Song, W.-G.; Guo, Y.-G. High-yield gas-liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries. Chem. Mater. 2009, 21, 1162–1166.Google Scholar
  176. [176]
    Wang, L.; Yu, Y.; Chen, P. C.; Zhang, D. W.; Chen, C. H. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J. Power Sources 2008, 183, 717–723.Google Scholar
  177. [177]
    Zhang, Q. M.; Shi, Z. C.; Deng, Y. F.; Zheng, J.; Liu, G. C.; Chen, G. H. Hollow Fe3O4/C spheres as superior lithium storage materials. J. Power Sources 2012, 197, 305–309.Google Scholar
  178. [178]
    Chen, D. Y.; Ji, G.; Ma, Y.; Lee, J. Y.; Lu, J. M. Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 3078–3083.Google Scholar
  179. [179]
    Zhou, G. M.; Wang, D.-W.; Li, F.; Zhang, L. L.; Li, N.; Wu, Z.-S.; Wen, L.; Lu, G. Q.; Cheng, H.-M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306–5313.Google Scholar
  180. [180]
    Wang, J.-Z.; Zhong, C.; Wexler, D.; Idris, N. H.; Wang, Z.-X.; Chen, L.-Q.; Liu, H.-K. Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem. Eur. J. 2011, 17, 661–667.Google Scholar
  181. [181]
    Lian, P. C.; Zhu, X. F.; Xiang, H. F.; Li, Z.; Yang, W. S.; Wang, H. H. Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim. Acta 2010, 56, 834–840.Google Scholar
  182. [182]
    Su, J.; Cao, M. H.; Ren, L.; Hu, C. W. Fe3O4-graphene nanocomposites with improved lithium-storage and magnetism properties. J. Phys. Chem. C 2011, 115, 14469–14477.Google Scholar
  183. [183]
    Li, X. Y.; Huang, X. L.; Liu, D. P.; Wang, X.; Song, S. Y.; Zhou, L.; Zhang, H. J. Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J. Phys. Chem. C 2011, 115, 21567–21573.Google Scholar
  184. [184]
    Ji, L. W.; Tan, Z. K.; Kuykendall, T. R.; Aloni, S.; Xun, S.; Lin, E.; Battaglia, V.; Zhang, Y. G. Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. Phys. Chem. Chem. Phys. 2011, 13, 7170–7177.Google Scholar
  185. [185]
    Li, B. J.; Cao, H. Q.; Shao, J.; Qu, M. Z. Enhanced anode performances of the Fe3O4-carbon-rGO three dimensional composite in lithium ion batteries. Chem. Commun. 2011, 47, 10374–10376.Google Scholar
  186. [186]
    Ban, C. M.; Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. F.; Blackburn, J. L.; Dillon, A. C. Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate Li-ion anode. Adv. Mater. 2010, 22, E145–E149.Google Scholar
  187. [187]
    Wang, S. Q.; Zhang, J. Y.; Chen, C. H. Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance. J. Power Sources 2010, 195, 5379–5381.Google Scholar
  188. [188]
    Shaju, K. M.; Jiao, F.; Débart, A.; Bruce, P. G. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 2007, 9, 1837–1842.Google Scholar
  189. [189]
    Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.Google Scholar
  190. [190]
    Li, C. C.; Yin, X. M.; Chen, L. B.; Li, Q. H.; Wang, T. H. Synthesis of cobalt ion-based coordination polymer nanowires and their conversion into porous Co3O4 nanowires with good lithium storage properties. Chem. Eur. J. 2010, 16, 5215–5221.Google Scholar
  191. [191]
    Zhang, P.; Guo, Z. P.; Huang, Y. D.; Jia, D. Z.; Liu, H. K. Synthesis of Co3O4/carbon composite nanowires and their electrochemical properties. J. Power Sources 2011, 196, 6987–6991.Google Scholar
  192. [192]
    Du, N.; Zhang, H.; Chen, B. D.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D. R.; Huang, X. H.; Tu, J. P. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications. Adv. Mater. 2007, 19, 4505–4509.Google Scholar
  193. [193]
    Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.Google Scholar
  194. [194]
    Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 2008, 18, 4397–4401.Google Scholar
  195. [195]
    Tian, L.; Zou, H. L.; Fu, J. X.; Yang, X. F.; Wang, Y.; Guo, H. L.; Fu, X. H.; Liang, C. L.; Wu, M. M.; Shen, P. K.; et al. Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemical performance. Adv. Funct. Mater. 2010, 20, 617–623.Google Scholar
  196. [196]
    Zhan, F. M.; Geng, B. Y.; Guo, Y. J. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries. Chem. Eur. J. 2009, 15, 6169–6174.Google Scholar
  197. [197]
    Wang, X.; Wu, X.-L.; Guo, Y.-G.; Zhong, Y. T.; Cao, X. Q.; Ma, Y.; Yao, J. N. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 2010, 20, 1680–1686.Google Scholar
  198. [198]
    Wang, X.; Yu, L. J.; Wu, X.-L.; Yuan, F. L.; Guo, Y.-G.; Ma, Y.; Yao, J. N. Synthesis of single-crystalline Co3O4 octahedral cages with tunable surface aperture and their lithium storage properties. J. Phys. Chem. C 2009, 113, 15553–15558.Google Scholar
  199. [199]
    Chen, S. Q.; Wang, Y. Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem. 2010, 20, 9735–9739.Google Scholar
  200. [200]
    Li, B. J.; Cao, H. Q.; Shao, J.; Li, G. Q.; Qu, M. Z.; Yin, G. Co3O4@graphene composites as anode materials for high-performance lithium ion batteries. Inorg. Chem. 2011, 50, 1628–1632.Google Scholar
  201. [201]
    Zhu, J. X.; Sharma, Y. K.; Zeng, Z. Y.; Zhang, X. J.; Srinivasan, M.; Mhaisalkar, S.; Zhang, H.; Hng, H. H.; Yan, Q. Y. Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J. Phys. Chem. C 2011, 115, 8400–8406.Google Scholar
  202. [202]
    Wu, Z.-S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H.-M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.Google Scholar
  203. [203]
    Kim, H.; Seo, D.-H.; Kim, S.-W.; Kim, J.; Kang, K. Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon 2011, 49, 326–332.Google Scholar
  204. [204]
    Cheng, H.; Lu, Z. G.; Deng, J. Q.; Chung, C. Y.; Zhang, K. L.; Li, Y. Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 2010, 3, 895–901.Google Scholar
  205. [205]
    Wang, X. H.; Yang, Z. B.; Sun, X. L.; Li, X. W.; Wang, D. S.; Wang, P.; He, D. Y. NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. J. Mater. Chem. 2011, 21, 9988–9990.Google Scholar
  206. [206]
    Hassan, M. F.; Guo, Z. P.; Chen, Z.; Liu, H. K. Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. J. Power Sources 2010, 195, 2372–2376.Google Scholar
  207. [207]
    Zhong, K. F.; Xia, X.; Zhang, B.; Li, H.; Wang, Z. X.; Chen, L. Q. MnO powder as anode active materials for lithium ion batteries. J. Power Sources 2010, 195, 3300–3308.Google Scholar
  208. [208]
    Xu, G.-L.; Xu, Y.-F.; Sun, H.; Fu, F.; Zheng, X.-M.; Huang, L.; Li, J.-T.; Yang, S.-H.; Sun, S.-G. Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries. Chem. Commun. 2012, 48, 8502–8504.Google Scholar
  209. [209]
    Li, L. H.; Nan, C. Y.; Lu, J.; Peng, Q.; Li, Y. D. ga-MnO2 nanotubes: High surface area and enhanced lithium battery properties. Chem. Commun. 2012, 48, 6945–6947.Google Scholar
  210. [210]
    Reddy, A. L. M.; Shaijumon, M. M.; Gowda, S. R.; Ajayan, P. M. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 2009, 9, 1002–1006.Google Scholar
  211. [211]
    Xia, H.; Lai, M.; Lu, L. Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J. Mater. Chem. 2010, 20, 6896–6902.Google Scholar
  212. [212]
    Ji, L. W.; Zhang, X. W. Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries. Electrochem. Commun. 2009, 11, 795–798.Google Scholar
  213. [213]
    Wang, H. L.; Cui, L.-F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.Google Scholar
  214. [214]
    Varghese, B.; Reddy, M. V.; Yanwu, Z.; Lit, C. S.; Hoong, T. C.; Subba Rao, G. V.; Chowdari, B. V. R.; Wee, A. T. S.; Lim, C. T.; Sow, C.-H. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mater. 2008, 20, 3360–3367.Google Scholar
  215. [215]
    Wang, X. H.; Li, X. W.; Sun, X. L.; Li, F.; Liu, Q. M.; Wang, Q.; He, D. Y. Nanostructured NiO electrode for high rate Li-ion batteries. J. Mater. Chem. 2011, 21, 3571–3573.Google Scholar
  216. [216]
    Ci, S. Q.; Zou, J. P.; Zeng, G. S.; Peng, Q.; Luo, S. L.; Wen, Z. H. Improved electrochemical properties of single crystalline NiO nanoflakes for lithium storage and oxygen electroreduction. RSC Adv. 2012, 2, 5185–5192.Google Scholar
  217. [217]
    Mai, Y. J.; Tu, J. P.; Xia, X. H.; Gu, C. D.; Wang, X. L. Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries. J. Power Sources 2011, 196, 6388–6393.Google Scholar
  218. [218]
    Zhou, G. M.; Wang, D.-W.; Yin, L.-C.; Li, N.; Li, F.; Cheng, H.-M. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 2012, 6, 3214–3223.Google Scholar
  219. [219]
    Huang, Y.; Huang, X.-L.; Lian, J.-S; Xu, D.; Wang, L.-M.; Zhang, X.-B. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 2012, 22, 2844–2847.Google Scholar
  220. [220]
    Xu, C. H.; Sun, J.; Gao, L. Large scale synthesis of nickel oxide/multiwalled carbon nanotube composites by direct thermal decomposition and their lithium storage properties. J. Power Sources 2011, 196, 5138–5142.Google Scholar
  221. [221]
    Liu, H.; Wang, G. X.; Liu, J.; Qiao, S. Z.; Ahn, H. Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 2011, 21, 3046–3052.Google Scholar
  222. [222]
    Chen, X.; Zhang, N. Q.; Sun, K. N. Facile fabrication of CuO 1D pine-needle-like arrays for super-rate lithium storage. J. Mater. Chem. 2012, 22, 15080–15084.Google Scholar
  223. [223]
    Wang, L. L.; Cheng, W.; Gong, H. X.; Wang, C. H.; Wang, D. K.; Tang, K. B.; Qian, Y. T. Facile synthesis of nanocrystalline-assembled bundle-like CuO nanostructure with high rate capacities and enhanced cycling stability as an anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 11297–11302.Google Scholar
  224. [224]
    Wang, F.; Tao, W. Z.; Zhao, M. S.; Xu, M. W.; Yang, S. C.; Sun, Z. B.; Wang, L. Q.; Song, X. P. Controlled synthesis of uniform ultrafine CuO nanowires as anode material for lithium-ion batteries. J. Alloys Compd. 2011, 509, 9798–9803.Google Scholar
  225. [225]
    Chen, L. B.; Lu, N.; Xu, C. M.; Yu, H. C.; Wang, T. H. Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochim. Acta 2009, 54, 4198–4201.Google Scholar
  226. [226]
    Ke, F.-S.; Huang, L.; Wei, G.-Z.; Xue, L.-J.; Li, J.-T.; Zhang, B.; Chen, S.-R.; Fan, X.-Y.; Sun, S.-G. One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochim. Acta 2009, 54, 5825–5829.Google Scholar
  227. [227]
    Chen, X.; Zhang, N. Q.; Sun, K. N. Facile fabrication of CuO mesoporous nanosheet cluster array electrodes with super lithium-storage properties. J. Mater. Chem. 2012, 22, 13637–13642.Google Scholar
  228. [228]
    Wang, Z. Y.; Su, F. B.; Madhavi, S.; Lou, X. W. CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. Nanoscale 2011, 3, 1618–1623.Google Scholar
  229. [229]
    Wang, H. B.; Pan, Q. M.; Zhao, J. W.; Yin, G. P.; Zuo, P. J. Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion batteries. J. Power Sources 2007, 167, 206–211.Google Scholar
  230. [230]
    Xiang, J. Y.; Tu, J. P.; Huang, X. H.; Yang, Y. Z. A comparison of anodically grown CuO nanotube film and Cu2O film as anodes for lithium ion batteries. J. Solid State Electrochem. 2008, 12, 941–945.Google Scholar
  231. [231]
    Wang, B.; Wu, X.-L.; Shu, C.-Y.; Guo, Y.-G.; Wang, C.-R. Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. 2010, 20, 10661–10664.Google Scholar
  232. [232]
    Mai, Y. J.; Wang, X. L.; Xiang, J. Y.; Qiao, Y. Q.; Zhang, D.; Gu, C. D.; Tu, J. P. CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim. Acta 2011, 56, 2306–2311.Google Scholar
  233. [233]
    Lu, L. Q.; Wang, Y. Sheet-like and fusiform CuO nanostructures grown on graphene by rapid microwave heating for high Li-ion storage capacities. J. Mater. Chem. 2011, 21, 17916–17921.Google Scholar
  234. [234]
    Ko, S.; Lee, J.-I.; Yang, H. S.; Park, S.; Jeong, U. Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv. Mater. 2012, 24, 4451–4456.Google Scholar
  235. [235]
    Xiang, J. Y.; Tu, J. P.; Zhang, J.; Zhong, J.; Zhang, D.; Cheng, J. P. Incorporation of MWCNTs into leaf-like CuO nanoplates for superior reversible Li-ion storage. Electrochem. Commun. 2010, 12, 1103–1107.Google Scholar
  236. [236]
    Wang, H. B.; Pan, Q. M.; Cheng, Y. X.; Zhao, J. W.; Yin, G. P. Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim. Acta 2009, 54, 2851–2855.Google Scholar
  237. [237]
    Huang, X. H.; Xia, X. H.; Yuan, Y. F.; Zhou, F. Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim. Acta 2011, 56, 4960–4965.Google Scholar
  238. [238]
    Liu, J. P.; Li, Y. Y.; Ding, R. M.; Jiang, J.; Hu, Y. Y.; Ji, X. X.; Chi, Q. B.; Zhu, Z. H.; Huang, X. T. Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability. J. Phys. Chem. C 2009, 113, 5336–5339.Google Scholar
  239. [239]
    Ahmad, M.; Yingying, S.; Nisar, A.; Sun, H. Y; Shen, W. C.; Wei, M.; Zhu, J. Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 2011, 21, 7723–7729.Google Scholar
  240. [240]
    Zhang, C. Q.; Tu, J. P.; Yuan, Y. F.; Huang, X. H.; Chen, X. T.; Mao, F. Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries. J. Electrochem. Soc. 2007, 154, A65–A69.Google Scholar
  241. [241]
    Shi, Y. F.; Guo, B. K.; Corr, S. A; Shi, Q. H.; Hu, Y.-S.; Heier, K. R.; Chen, L. Q.; Seshadri, R.; Stucky, G. D. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 2009, 9, 4215–4220.Google Scholar
  242. [242]
    Sun, Y. M.; Hu, X. L.; Yu, J. C.; Li, Q.; Luo, W.; Yuan, L. X.; Zhang, W. X.; Huang, Y. H. Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2870–2877.Google Scholar
  243. [243]
    Wang, Z. Y.; Chen, J. S.; Zhu, T.; Madhavi, S.; Lou, X. W. One-pot synthesis of uniform carbon-coated MoO2 nanospheres for high-rate reversible lithium storage. Chem. Commun. 2010, 46, 6906–6908.Google Scholar
  244. [244]
    Luo, W.; Hu, X. L.; Sun, Y. M.; Huang, Y. H. Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties. Phys. Chem. Chem. Phys. 2011, 13, 16735–16740.Google Scholar
  245. [245]
    Zhou, L.; Wu, H. B.; Wang, Z. Y.; Lou, X. W. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 4853–4857.Google Scholar
  246. [246]
    Lee, S.-H.; Kim, Y.-H.; Deshpande, R.; Parilla, P. A.; Whitney, E.; Gillaspie, D. T.; Jones, K. M.; Mahan, A. H.; Zhang, S. B.; Dillon, A. C. Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv. Mater. 2008, 20, 3627–3632.Google Scholar
  247. [247]
    Riley, L. A.; Lee, S.-H.; Gedvilias, L.; Dillon, A. C. Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries. J. Power Sources 2010, 195, 588–592.Google Scholar
  248. [248]
    Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x ⩽ 1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.Google Scholar
  249. [249]
    Chen, H. L.; Grey, C. P. Molten salt synthesis and high rate performance of the “Desert-Rose” form of LiCoO2. Adv. Mater. 2008, 20, 2206–2210.Google Scholar
  250. [250]
    Lu, H.-W.; Yu, L.; Zeng, W.; Li, Y.-S.; Fu, Z.-W. Fabrication and electrochemical properties of three-dimensional structure of LiCoO2 fibers. Electrochem. Solid-State Lett. 2008, 11, A140–A144.Google Scholar
  251. [251]
    Pentyala, N.; Guduru, R. K.; Mohanty, P. S. Binder free porous ultrafine/nano structured LiCoO2 cathode from plasma deposited cobalt. Electrochim. Acta 2011, 56, 9851–9859.Google Scholar
  252. [252]
    Quan, Z.; Iwase, K.; Sonoyama, N. Synthesis and electrochemical property of LiCoO2 thin films composed of nanosize compounds synthesized via nanosheet restacking method. J. Power Sources 2011, 196, 6762–6767.Google Scholar
  253. [253]
    Xiao, X. L.; Yang, L. M.; Zhao, H.; Hu, Z. B.; Li, Y. D. Facile synthesis of LiCoO2 nanowires with high electrochemical performance. Nano Res. 2012, 5, 27–32.Google Scholar
  254. [254]
    Xiao, X. L.; Liu, X. F.; Wang, L.; Zhao, H.; Hu, Z. B.; He, X. M.; Li, Y. D. LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Res. 2012, 5, 395–401.Google Scholar
  255. [255]
    Mizuno, Y.; Hosono, E.; Saito, T.; Okubo, M.; Nishio-Hamane, D.; Oh-ishi, K.; Kudo, T.; Zhou, H. S. Electrospinning synthesis of wire-structured LiCoO2 for electrode materials of high-power Li-ion batteries. J. Phys. Chem. C 2012, 116, 10774–10780.Google Scholar
  256. [256]
    Jung, Y. S.; Cavanagh, A. S.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S.-H. Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface modification by atomic layer deposition. J. Electrochem. Soc. 2010, 157, A75–A81.Google Scholar
  257. [257]
    Luo, S.; Wang, K.; Wang, J. P.; Jiang, K. L.; Li, Q. Q.; Fan, S. S. Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv. Mater. 2012, 24, 2294–2298.Google Scholar
  258. [258]
    Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.Google Scholar
  259. [259]
    Chen, Z. H.; Qin, Y.; Amine, K.; Sun, Y.-K. Role of surface coating on cathode materials for lithium-ion batteries. J. Mater. Chem. 2010, 20, 7606–7612.Google Scholar
  260. [260]
    Hao, Q.; Ma, H. Y.; Ju, Z. C.; Li, G. D.; Li, X. W.; Xu, L. Q.; Qian, Y. T. Nano-CuO coated LiCoO2: Synthesis, improved cycling stability and good performance at high rates. Electrochim. Acta 2011, 56, 9027–9031.Google Scholar
  261. [261]
    Pu, X.; Yin, L.; Yu, C. Functional surface modifications on nanostructured LiCoO2 with lithium vanadates. J. Nanopart. Res. 2012, 14, 788.Google Scholar
  262. [262]
    Scott, I. D.; Jung, Y. S.; Cavanagh, A. S.; Yan, Y. F.; Dillon, A. C.; George, S. M.; Lee, S.-H. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett. 2011, 11, 414–418.Google Scholar
  263. [263]
    Cheng, H.-M.; Wang, F.-M.; Chu, J. P.; Santhanam, R.; Rick, J.; Lo, S.-C. Enhanced cycleabity in lithium ion batteries: Resulting from atomic layer depostion of Al2O3 or TiO2 on LiCoO2 electrodes. J. Phys. Chem. C 2012, 116, 7629–7637.Google Scholar
  264. [264]
    Park, O. K.; Cho, Y.; Lee, S.; Yoo, H.-C.; Song, H.-K.; Cho, J. Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci. 2011, 4, 1621–1633.Google Scholar
  265. [265]
    Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. S. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 2009, 9, 1045–1051.Google Scholar
  266. [266]
    Kim, J.-H.; Ayalasomayajula, T.; Gona, V.; Choi, D. Fabrication and electrochemical characterization of a vertical array of MnO2 nanowires grown on silicon substrates as a cathode material for lithium rechargeable batteries. J. Power Sources 2008, 183, 366–369.Google Scholar
  267. [267]
    Lee, H.-W.; Muralidharan, P.; Ruffo, R.; Mari, C. M.; Cui, Y.; Kim, D. K. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 2010, 10, 3852–3856.Google Scholar
  268. [268]
    Luo, J.-Y.; Xiong, H.-M.; Xia, Y.-Y. LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery. J. Phys. Chem. C 2008, 112, 12051–12057.Google Scholar
  269. [269]
    Fang, H. S.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S. Low-temperature synthesis of highly crystallized LiMn2O4 from α-manganese dioxide nanorods. J. Power Sources 2008, 184, 494–497.Google Scholar
  270. [270]
    Yang, Y.; Xie, C.; Ruffo, R.; Peng, H. L.; Kim, D. K.; Cui, Y. Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 2009, 9, 4109–4114.Google Scholar
  271. [271]
    Kim, D. K.; Muralidharan, P.; Lee, H.-W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H. L.; Huggins, R. A.; Cui, Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 3948–3952.Google Scholar
  272. [272]
    Cho, J. VOx-coated LiMn2O4 nanorod clusters for lithium battery cathode materials. J. Mater. Chem. 2008, 18, 2257–2261.Google Scholar
  273. [273]
    Ding, Y.-L.; Xie, J.; Cao, G.-S.; Zhu, T.-J.; Yu, H.-M.; Zhao, X.-B. Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries. Adv. Funct. Mater. 2011, 21, 348–355.Google Scholar
  274. [274]
    Shaju, K. M.; Bruce, P. G. A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem. Mater. 2008, 20, 5557–5562.Google Scholar
  275. [275]
    Okubo, M.; Mizuno, Y.; Yamada, H.; Kim, J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. Fast Li-ion insertion into nanosized LiMn2O4 without domain boundaries. ACS Nano 2010, 4, 741–752.Google Scholar
  276. [276]
    Tang, W.; Wang, X. J.; Hou, Y. Y.; Li, L. L.; Sun, H.; Zhu, Y. S.; Bai, Y.; Wu, Y. P.; Zhu, K.; van Ree, T. Nano LiMn2O4 as cathode material of high rate capability for lithium ion batteries. J. Power Sources 2012, 198, 308–311.Google Scholar
  277. [277]
    Jiao, F.; Bao, J. L.; Hill, A. H.; Bruce, P. G. Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 9711–9716.Google Scholar
  278. [278]
    Tonti, D.; Torralvo, M. J.; Enciso, E.; Sobrados, I.; Sanz, J. Three-dimensionally ordered macroporous lithium manganese oxide for rechargeable lithium batteries. Chem. Mater. 2008, 20, 4783–4790.Google Scholar
  279. [279]
    Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Lithium insertion into manganese spinels. Mater. Res. Bull. 1983, 18, 461–472.Google Scholar
  280. [280]
    Şahan, H.; Göktepe, H.; Patat, S.; Ülgen, A. The effect of LBO coating method on electrochemical performance of LiMn2O4 cathode material. Solid State Ionics 2008, 178, 1837–1842.Google Scholar
  281. [281]
    Lim, S.; Cho, J. PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates. Electrochem. Commun. 2008, 10, 1478–1481.Google Scholar
  282. [282]
    Feng, L. J.; Wang, S. P.; Han, L.; Qin, X. Y.; Wei, H. Y.; Yang, Y. Z. Enhanced electrochemical properties of LiMn2O4 cathode material coated by 5 wt.% of nano-La2O3. Mater. Lett. 2012, 78, 116–119.Google Scholar
  283. [283]
    Ito, A.; Li, D. C.; Lee, Y. S.; Kobayakawa, K.; Sato, Y. Influence of Co substitution for Ni and Mn on the structural and electrochemical characteristics of LiNi0.5Mn1.5O4. J. Power Sources 2008, 185, 1429–1433.Google Scholar
  284. [284]
    Xiao, L. F.; Zhao, Y. Q.; Yang, Y. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method. Electrochim. Acta 2008, 54, 545–550.Google Scholar
  285. [285]
    Armstrong, A. R.; Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 1996, 381, 499–500.Google Scholar
  286. [286]
    Ji, H. M.; Yang, G.; Miao, X. W.; Hong, A. Q. Efficient microwave hydrothermal synthesis of nanocrystalline orthorhombic LiMnO2 cathodes for lithium batteries. Electrochim. Acta 2010, 55, 3392–3397.Google Scholar
  287. [287]
    Bruce, P. G.; Armstrong, A. R.; Gitzendanner, R. L. New intercalation compounds for lithium batteries: Layered LiMnO2. J. Mater. Chem. 1999, 9, 193–198.Google Scholar
  288. [288]
    Xiao, X. L.; Wang, L.; Wang, D. S.; He, X. M.; Peng, Q.; Li, Y. D. Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2009, 2, 923–930.Google Scholar
  289. [289]
    Ren, Y.; Armstrong, A. R.; Jiao, F.; Bruce, P. G. Influence of size on the rate of mesoporous electrodes for lithium batteries. J. Am. Chem. Soc. 2010, 132, 996–1004.Google Scholar
  290. [290]
    Liu, Q.; Li, Y. X.; Hu, Z. L.; Mao, D. L.; Chang, C. K.; Huang, F. Q. One-step hydrothermal routine for pure-phased orthorhombic LiMnO2 for Li ion battery application. Electrochim. Acta 2008, 53, 7298–7302.Google Scholar
  291. [291]
    He, Y.; Li, R. H.; Ding, X. K.; Jiang, L. L.; Wei, M. D. Hydrothermal synthesis and electrochemical properties of orthorhombic LiMnO2 nanoplates. J. Alloys Compd. 2010, 492, 601–604.Google Scholar
  292. [292]
    Liu, J.; Manthiram, A. Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.5O4. J. Phys. Chem. C 2009, 113, 15073–15079.Google Scholar
  293. [293]
    Wang, H. L.; Xia, H.; Lai, M. O.; Lu, L. Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-doping. Electrochem. Commun. 2009, 11, 1539–1542.Google Scholar
  294. [294]
    Patoux, S.; Sannier, L.; Lignier, H.; Reynier, Y.; Bourbon, C.; Jouanneau, S.; Le Cras, F.; Martinet, S. High voltage nickel manganese spinel oxides for Li-ion batteries. Electrochim. Acta 2008, 53, 4137–4145.Google Scholar
  295. [295]
    Yi, T.-F.; Zhu, Y.-R. Synthesis and electrochemistry of 5V LiNi0.4Mn1.6O4 cathode materials synthesized by different methods. Electrochim. Acta 2008, 53, 3120–3126.Google Scholar
  296. [296]
    Kim, M. G.; Jo, M.; Hong, Y.-S.; Cho, J. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem. Commun. 2009, 218–220.Google Scholar
  297. [297]
    Wu, H. M.; Belharouak, I.; Abouimrane, A.; Sun, Y.-K.; Amine, K. Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. J. Power Sources 2010, 195, 2909–2913.Google Scholar
  298. [298]
    Arrebola, J. C.; Caballero, A.; Hernán, L.; Morales, J. A high energy Li-ion battery based on nanosized LiNi0.5Mn1.5O4 cathode material. J. Power Sources 2008, 183, 310–315.Google Scholar
  299. [299]
    Santhanam, R.; Rambabu, B. Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J. Power Sources 2010, 195, 5442–5451.Google Scholar
  300. [300]
    Arunkumar, T. A.; Manthiram, A. Influence of lattice parameter differences on the electrochemical performance of the 5 V spinel LiMn1.5−yNi0.5−zMy+zO4 (M = Li, Mg, Fe, Co, and Zn). Electrochem. Solid-State Lett. 2005, 8, A403–A405.Google Scholar
  301. [301]
    Liu, J.; Manthiram, A. Improved electrochemical performance of the 5 V spinel cathode LiMn1.5Ni0.42Zn0.08O4 by surface modification. J. Electrochem. Soc. 2009, 156, A66–A72.Google Scholar
  302. [302]
    Aklalouch, M.; Amarilla, J. M.; Rojas, R. M.; Saadoune, I.; Rojo, J. M. Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNi0.5Mn1.5O4-based positive electrode. J. Power Sources 2008, 185, 501–511.Google Scholar
  303. [303]
    Liu, J.; Manthiram, A. Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells. Chem. Mater. 2009, 21, 1695–1707.Google Scholar
  304. [304]
    Hassoun, J.; Lee, K.-S.; Sun, Y.-K.; Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 2011, 133, 3139–3143.Google Scholar
  305. [305]
    Hu, S.-K.; Cheng, G.-H.; Cheng, M.-Y.; Hwang, B.-J.; Santhanam, R. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J. Power Sources 2009, 188, 564–569.Google Scholar
  306. [306]
    Lin, B.; Wen, Z. Y.; Gu, Z. H.; Huang, S. H. Morphology and electrochemical performance of Li[Ni1/3Co1/3Mn1/3]O2 cathode material by a slurry spray drying method. J. Power Sources 2008, 175, 564–569.Google Scholar
  307. [307]
    Yabuuchi, N.; Yoshii, K.; Myung, S.-T.; Nakai, I.; Komaba, S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 2011, 133, 4404–4419.Google Scholar
  308. [308]
    Martha, S. K.; Sclar, H.; Szmuk Framowitz, Z.; Kovacheva, D.; Saliyski, N.; Gofer, Y.; Sharon, P.; Golik, E.; Markovsky, B.; Aurbach, D. A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds. J. Power Sources 2009, 189, 248–255.Google Scholar
  309. [309]
    Park, S.-H.; Kang, S.-H.; Belharouak, I.; Sun, Y. K.; Amine, K. Physical and electrochemical properties of spherical Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 cathode materials. J. Power Sources 2008, 177, 177–183.Google Scholar
  310. [310]
    Guo, R.; Shi, P. F.; Cheng, X. Q.; Du, C. Y. Synthesis and characterization of carbon-coated LiNi1/3Co1/3Mn1/3O2 cathode material prepared by polyvinyl alcohol pyrolysis route. J. Alloys Compd. 2009, 473, 53–59.Google Scholar
  311. [311]
    Huang, Y. Y.; Chen, J. T.; Ni, J. F.; Zhou, H. H.; Zhang, X. X. A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. J. Power Sources 2009, 188, 538–545.Google Scholar
  312. [312]
    Santhanam, R.; Rambabu, B. High rate cycling performance of Li1.05Ni1/3Co1/3Mn1/3O2 materials prepared by sol-gel and co-precipitation methods for lithium-ion batteries. J. Power Sources 2010, 195, 4313–4317.Google Scholar
  313. [313]
    Jiang, M.; Key, B.; Meng, Y. S.; Grey, C. P. Electrochemical and structural sudy of the layered, “Li-excess” lithium-ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2. Chem. Mater. 2009, 21, 2733–2745.Google Scholar
  314. [314]
    Wei, G.-Z.; Lu, X.; Ke, F.-S.; Huang, L.; Li, J.-T.; Wang, Z.-X.; Zhou, Z.-Y.; Sun, S.-G. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium-ion batteries. Adv. Mater. 2010, 22, 4364–4367.Google Scholar
  315. [315]
    Ito, A.; Li, D. C.; Sato, Y.; Arao, M.; Watanabe, M.; Hatano, M.; Horie, H.; Ohsawa, Y. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J. Power Sources 2010, 195, 567–573.Google Scholar
  316. [316]
    O’Dwyer, C.; Lavayen, V.; Newcomb, S. B.; Santa Ana, M. A.; Benavente, E.; González, G.; Sotomayor Torres, C. M. Vanadate conformation variations in vanadium pentoxide nanostructures. J. Electrochem. Soc. 2007, 154, K29–K35.Google Scholar
  317. [317]
    Wang, Y.; Cao, G. Z. Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 2006, 18, 2787–2804.Google Scholar
  318. [318]
    Murphy, D.; Christian, P. Lithium incorporation by vanadium pentoxide nanoribbons. Nano Lett. 2007, 7, 490–495.Google Scholar
  319. [319]
    Delmas, C.; Cognac-Auradou, H.; Cocciantelli, J. M.; Ménétrier, M.; Doumerc, J. P. The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation. Solid State Ionics 1994, 69, 257–264.Google Scholar
  320. [320]
    Cocciantelli, J. M.; Ménétrier, M.; Delmas, C.; Doumerc, J. P.; Pouchard, M.; Broussely, M.; Labat, J. On the δ→Γ irreversible transformation in Li//V2O5 secondary batteries. Solid State Ionics 1995, 78, 143–150.Google Scholar
  321. [321]
    Leger, C.; Bach, S.; Soudan, P.; Pereira-Ramos, J.-P. Structural and electrochemical properties of ω LixV2O5 (0.4 ⩽ x ⩽ 3) as rechargeable cathodic material for lithium batteries. J. Electrochem. Soc. 2005, 152, A236–A241Google Scholar
  322. [322]
    Chan, C. K.; Peng, H. L.; Twesten, R. D.; Jarausch, K.; Zhang, X. F.; Cui, Y. Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 2007, 7, 490–495.Google Scholar
  323. [323]
    Pan, A. Q.; Zhang, J.-G.; Nie, Z. M.; Cao, G. Z.; Arey, B. W.; Li, G. S.; Liang, S.-Q.; Liu, J. Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater. Chem. 2010, 20, 9193–9199.Google Scholar
  324. [324]
    Reddy, C. V. S.; Wicker, S. A.; Walker, E. H.; Williams, Q. L.; Kalluru, R. R. Vanadium oxide nanorods for Li-ion battery applications. J. Electrochem. Soc. 2008, 155, A599–A602.Google Scholar
  325. [325]
    Zhai, T. Y.; Liu, H. M.; Li, H. Q.; Fang, X. S.; Liao, M. Y.; Li, L.; Zhou, H. S.; Koide, Y.; Bando, Y.; Golberg, D. Centimeter-long V2O5 nanowires: From synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 2010, 22, 2547–2552.Google Scholar
  326. [326]
    Yu, D. M.; Chen, C. G.; Xie, S. H.; Liu, Y. Y.; Park, K.; Zhou, X. Y.; Zhang, Q. F.; Li, J. Y.; Cao, G. Z. Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electrospinning. Energy Environ. Sci. 2011, 4, 858–861.Google Scholar
  327. [327]
    Liu, H. M.; Yang, W. S. Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy Environ. Sci. 2011, 4, 4000–4008.Google Scholar
  328. [328]
    Cheah, Y. L.; Gupta, N.; Pramana, S. S.; Aravindan, V.; Wee, G.; Srinivasan, M. Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. J. Power Sources 2011, 196, 6465–6472.Google Scholar
  329. [329]
    Mai, L. Q.; Xu, L.; Han, C. H.; Xu, X.; Luo, Y. Z.; Zhao, S. Y.; Zhao, Y. L. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 2010, 10, 4750–4755.Google Scholar
  330. [330]
    Cheah, Y. L.; Aravindan, V.; Madhavi, S. Improved elevated temperature performance of Al-intercalated V2O5 electrospun nanofibers for lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 3270–3277.Google Scholar
  331. [331]
    Wang, H.-G.; Ma, D.-L.; Huang, Y.; Zhang, X.-B. Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries. Chem. Eur. J. 2012, 18, 8987–8993.Google Scholar
  332. [332]
    Ban, C. M.; Chernova, N. A.; Whittingham, M. S. Electrospun nano-vanadium pentoxide cathode. Electrochem. Commun. 2009, 11, 522–525.Google Scholar
  333. [333]
    Zhou, F.; Zhou, X. M.; Yuan, C.; Li, L. Vanadium pentoxide nanowires: Hydrothermal synthesis, formation mechanism, and phase control parameters. Cryst. Growth Des. 2008, 8, 723–727.Google Scholar
  334. [334]
    Wang, Y.; Zhang, H. J.; Lim, W. X.; Lin, J. Y.; Wong, C. C. Designed strategy to fabricate a patterned V2O5 nanobelt array as a superior electrode for Li-ion batteries. J. Mater. Chem. 2011, 21, 2362–2368.Google Scholar
  335. [335]
    Wang, Y.; Zhang, H. J.; Siah, K. W.; Wong, C. C.; Lin, J. Y.; Borgna, A. One pot synthesis of self-assembled V2O5 nanobelt membrane via capsule-like hydrated precursor as improved cathode for Li-ion battery. J. Mater. Chem. 2011, 21, 10336–10341.Google Scholar
  336. [336]
    Ragupathy, P.; Shivakumara, S.; Vasan, H. N.; Munichandraiah, N. Preparation of nanostrip V2O5 by the polyol method and its electrochemical characterization as cathode material for rechargeable lithium batteries. J. Phys. Chem. C 2008, 112, 16700–16707.Google Scholar
  337. [337]
    Rui, X. H.; Zhu, J. X.; Liu, W. L.; Tan, H. T.; Sim, D. H.; Xu, C.; Zhang, H.; Ma, J.; Hng, H. H.; Lim, T. M.; et al. Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries. RSC Adv. 2011, 1, 117–122.Google Scholar
  338. [338]
    Mohan, V. M.; Hu, B.; Qiu, W. L.; Chen, W. Synthesis, structural, and electrochemical performance of V2O5 nanotubes as cathode material for lithium battery. J. Appl. Electrochem. 2009, 39, 2001–2006.Google Scholar
  339. [339]
    O’Dwyer, C.; Lavayen, V.; Newcomb, S. B.; Benavente, E.; Santa Ana, M. A.; González, G.; Sotomayor Torres, C. M. Atomic layer structure of vanadium oxide nanotubes grown on nanourchin structures. Electrochem. Solid-State Lett. 2007, 10, A111–A114.Google Scholar
  340. [340]
    Zhang, X.-F.; Wang, K.-X.; Wei, X.; Chen, J.-S. Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 2011, 23, 5290–5292. (same as 362)Google Scholar
  341. [341]
    Wang, S. Q.; Lu, Z. D.; Wang, D.; Li, C. G.; Chen, C. H.; Yin, Y. D. Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J. Mater. Chem. 2011, 21, 6365–6369.Google Scholar
  342. [342]
    Sasidharan, M.; Gunawardhana, N.; Yoshio, M.; Nakashima, K. V2O5 hollow nanospheres: A lithium intercalation host with good rate capability and capacity retention. J. Electrochem. Soc. 2012, 159, A618–A621.Google Scholar
  343. [343]
    Liu, J.; Xia, H.; Xue, D. F.; Lu, L. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J. Am. Chem. Soc. 2009, 131, 12086–12087.Google Scholar
  344. [344]
    O’Dwyer, C.; Navas, D.; Lavayen, V.; Benavente, E.; Santa Ana, M. A.; González, G.; Newcomb, S. B.; Sotomayor Torres, C. M. Nano-urchin: The formation and structure of high-density spherical clusters of vanadium oxide nanotubes. Chem. Mater. 2006, 18, 3016–3022.Google Scholar
  345. [345]
    Lavayen, V.; O’Dwyer, C.; Santa Ana, M. A.; Newcomb, S. B.; Benavente, E.; González, G.; Sotomayor Torres, C. M. Comparative structural-vibrational study of nano-urchin and nanorods of vanadium oxide. Phys. Status Solidi B 2006, 243, 3285–3289.Google Scholar
  346. [346]
    Lee, J.-K.; Kim, G.-P.; Song, I. K.; Baeck, S.-H. Electrodeposition of mesoporous V2O5 with enhanced lithium-ion intercalation property. Electrochem. Commun. 2009, 11, 1571–1574.Google Scholar
  347. [347]
    Wang, S. Q.; Li, S. R.; Sun, Y.; Feng, X. Y.; Chen, C. H. Three-dimensional porous V2O5 cathode with ultra high rate capability. Energy Environ. Sci. 2011, 4, 2854–2857.Google Scholar
  348. [348]
    Hu, Y.-S.; Liu, X.; Müller, J.-O.; Schlögl, R.; Maier, J.; Su, D. S. Synthesis and electrode performance of nanostructured V2O5 by using a carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network. Angew. Chem. Int. Ed. 2008, 48, 210–214.Google Scholar
  349. [349]
    Sathiya, M.; Prakash, A. S.; Ramesha, K.; Tarascon, J.-M.; Shukla, A. K. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J. Am. Chem. Soc. 2011, 133, 16291–16299.Google Scholar
  350. [350]
    Du, G. D.; Seng, K. H.; Guo, Z. P.; Liu, J.; Li, W. X.; Jia, D. Z.; Cook, C.; Liu, Z. W.; Liu, H. K. Graphene-V2O5·nH2O xerogel composite cathodes for lithium ion batteries. RSC Adv. 2011, 1, 690–697.Google Scholar
  351. [351]
    Liu, D. W.; Liu, Y. Y.; Pan, A. Q.; Nagle, K. P.; Seidler, G. T.; Jeong, Y.-H.; Cao, G. Z. Enhanced lithium-ion intercalation properties of V2O5 xerogel electrodes with surface defects. J. Phys. Chem. C 2011, 115, 4959–4965.Google Scholar
  352. [352]
    Liu, Y. Y.; Clark, M.; Zhang, Q. F.; Yu, D. M.; Liu, D. W.; Liu, J.; Cao, G. W. V2O5 nano-electrodes with high power and energy densities for thin film Li-ion batteries. Adv. Energy Mater. 2011, 1, 194–202.Google Scholar
  353. [353]
    Dewangan, K.; Sinha, N. N.; Chavan, P. G.; Sharma, P. K.; Pandey, A. C.; More, M. A.; Joag, D. S.; Munichandraiah, N.; Gajbhiye, N. S. Synthesis and characterization of self-assembled nanofiber-bundles of V2O5: Their electrochemical and field emission properties. Nanoscale 2012, 4, 645–651.Google Scholar
  354. [354]
    Seng, K. H.; Liu, J.; Guo, Z. P.; Chen, Z. X.; Jia, D. Z.; Liu, H. K. Free-standing V2O5 electrode for flexible lithium ion batteries. Electrochem. Commun. 2011, 13, 383–386.Google Scholar
  355. [355]
    Li, D.; Xia, Y. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170.Google Scholar
  356. [356]
    Greiner, A.; Wendorff, J. H. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 2007, 46, 5670–703.Google Scholar
  357. [357]
    Cao, J.; Choi, J.; Musfeldt, J. L. Effect of sheet distance on the optical properties of vanadate nanotubes. Chem. Mater. 2004, 16, 731–736.Google Scholar
  358. [358]
    Petkov, V.; Zavalij, P. Y.; Lutta, S.; Whittingham, M. S.; Parvanov, V.; Shastri, S. Structure beyond Bragg: Study of V2O5 nanotubes. Phys. Rev. B 2004, 69, 085410.Google Scholar
  359. [359]
    O’Dwyer, C.; Lavayen, V.; Tanner, D. A.; Newcomb, S. B.; Benavente, E.; González, G.; Torres, C. M. S. Reduced surfactant uptake in three dimensional assemblies of VOx nanotubes improves reversible Li+ intercalation and charge capacity. Adv. Funct. Mater. 2009, 19, 1736–1745.Google Scholar
  360. [360]
    Livage, J. Vanadium pentoxide gels. Chem. Mater. 1991, 3, 578–593.Google Scholar
  361. [361]
    Zhang, X. F.; Wang, K. X.; Wei, X.; Chen, J. S. Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 2011, 23, 5290–5292.Google Scholar
  362. [362]
    Wadsley, A. D. Crystal chemistry of non-stoichiometric pentavalent vandadium oxides: Crystal structure of Li1+xV3O8. Acta Crystallogr. 1957, 10, 261–267.Google Scholar
  363. [363]
    Pan, A.; Liu, J.; Zhang, J. G.; Cao, G.; Xu, W.; Nie, Z.; Jie, X.; Choi, D.; Arey, B. W.; Wang, C.; et al. Template free synthesis of LiV3O8 nanorods as a cathode material for high-rate secondary lithium batteries. J. Mater. Chem. 2011, 21, 1153–1161.Google Scholar
  364. [364]
    Sakunthala, A.; Reddy, M.; Selvasekarapandian, S.; Chowdari, B.; Selvin, P. C. Preparation, characterization, and electrochemical performance of lithium trivanadate rods by a surfactant-assisted polymer precursor method for lithium batteries. J. Phys. Chem. C 2010, 114, 8099–8107.Google Scholar
  365. [365]
    Ju, S. H.; Kang, Y. C. Morphological and electrochemical properties of LiV3O8 cathode powders prepared by spray pyrolysis. Electrochim. Acta 2010, 55, 6088–6092.Google Scholar
  366. [366]
    Liu, H. M; Wang, Y. G.; Wang, K. X.; Wang, Y. R.; Zhou, H. S. Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. J. Power Sources 2009, 192, 668–673.Google Scholar
  367. [367]
    Qiao, Y. Q.; Wang, X. L.; Zhou, J. P.; Zhang, J.; Gu, C. D.; Tu, J. P. Synthesis and electrochemical performance of rod-like LiV3O8 cathode materials for rechargeable lithium batteries. J. Power Sources 2012, 198, 287–293.Google Scholar
  368. [368]
    Shi, Q.; Liu, J. W.; Hu, R. Z.; Zeng, M. Q.; Dai, M. J.; Zhu, M. An amorphous wrapped nanorod LiV3O8 electrode with enhanced performance for lithium ion batteries. RSC Adv. 2012, 2, 7273–7278.Google Scholar
  369. [369]
    Xu, X.; Luo, Y. Z.; Mai, L. Q.; Zhao, Y. L.; An, Q. Y.; Xu, L.; Hu, F.; Zhang, L.; Zhang, Q. J. Topotactically synthesized ultralong LiV3O8 nanowire cathode materials for high-rate and long-life rechargeable lithium batteries. NPG Asia. Mater. 2012, 4, e20.Google Scholar
  370. [370]
    Wang, H. Y.; Ren, Y.; Wang, Y.; Wang, W. J.; Liu, S. Q. Synthesis of LiV3O8 nanosheets as a high-rate cathode material for rechargeable lithium batteries. CrystEngComm. 2012, 14, 2831–2836.Google Scholar
  371. [371]
    Pan, A.; Zhang, J. G.; Cao, G.; Liang, S.; Wang, C.; Nie, Z.; Arey, B. W.; Xu, W.; Liu, D.; Xiao, J.; Li, G.; Liu, J. Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries. J. Mater. Chem. 2011, 21, 10077–10084.Google Scholar
  372. [372]
    Patey, T. J.; Ng, S. H.; Buchel, R.; Tran, N.; Krumeich, F.; Wang, J.; Liu, H. K.; Novák, P. Electrochemistry of LiV3O8 nanoparticles made by flame spray pyrolysis. Electrochem. Solid-State Lett. 2008, 11, A46–A50.Google Scholar
  373. [373]
    Padhi, A. K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194.Google Scholar
  374. [374]
    Wang, Y. G.; He, P.; Zhou, H. S. Olivine LiFePO4: Development and future. Energy. Environ. Sci. 2011, 4, 805–817.Google Scholar
  375. [375]
    Zhang, W. J. Structure and performance of LiFePO4 cathode materials: A review. J. Power Sources 2011, 196, 2962–2970.Google Scholar
  376. [376]
    Li, Z.; Zhang, D.; Yang, F. Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. J. Mater. Sci. 2009, 44, 2435–2443.Google Scholar
  377. [377]
    Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.Google Scholar
  378. [378]
    Gong, Z. L.; Yang, Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy. Environ. Sci. 2011, 4, 3223–3242.Google Scholar
  379. [379]
    Bhuvaneswari, M. S.; Bramnik, N. N.; Ensling, D.; Ehrenberg, H.; Jaegermann, W. Synthesis and characterization of carbon nano fiber/LiFePO4 composites for Li-ion batteries. J. Power Sources 2008, 180, 553–560.Google Scholar
  380. [380]
    Konarova, M.; Taniguchi, I. Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries. J. Power Sources 2010, 195, 3661–3667.Google Scholar
  381. [381]
    Doherty, C. M.; Caruso, R. A.; Smarsly, B. M.; Adelhelm, P.; Drummond, C. J. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chem. Mater. 2009, 21, 5300–5306.Google Scholar
  382. [382]
    Lu, C. Z.; Fey, G. T. K.; Kao, H. M. Study of LiFePO4 cathode materials coated with high surface area carbon. J. Power Sources 2009, 189, 155–162.Google Scholar
  383. [383]
    Zhao, B.; Jiang, Y.; Zhang, H. J.; Tao, H.; Zhong, M.; Jiao, Z. Morphology and electrical properties of carbon coated LiFePO4 cathode materials. J. Power Sources 2009, 189, 462–466.Google Scholar
  384. [384]
    Wang, Y.; Wang, Y.; Hosono, E.; Wang, K.; Zhou, H. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem. Int. Edit. 2008, 47, 7461–7465.Google Scholar
  385. [385]
    Chen, J.M.; Hsu, C. H.; Lin, Y. R.; Hsiao, M. H.; Fey, G. T. K. High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries. J. Power Sources 2008, 184, 498–502.Google Scholar
  386. [386]
    Ferrari, S.; Lavall, R. L.; Capsoni, D.; Quartarone, E.; Magistris, A.; Mustarelli, P.; Canton, P. Influence of particle size and crystal orientation on the electrochemical behavior of carbon-coated LiFePO4. J. Phys. Chem. C 2010, 114, 12598–12603.Google Scholar
  387. [387]
    Joachin, H.; Kaun, T. D.; Zaghib, K.; Prakash, J. Electrochemical and thermal studies of carbon-coated LiFePO4 cathode. J. Electrochem. Soc. 2009, 156, A401–A406.Google Scholar
  388. [388]
    Muraliganth, T.; Murugan, A. V.; Manthiram, A. Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries. J. Mater. Chem. 2008, 18, 5661–5668.Google Scholar
  389. [389]
    Kuwahara, A.; Suzuki, S.; Miyayama, M. High-rate properties of LiFePO4/carbon composites as cathode materials for lithium-ion batteries. Ceram. Int. 2008, 34, 863–866.Google Scholar
  390. [390]
    Cho, Y. D.; Fey, G. T. K.; Kao, H. M. The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes. J. Power Sources 2009, 189, 256–262.Google Scholar
  391. [391]
    Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energy-storage devices. Adv. Mater. 2009, 21, 2710–2714.Google Scholar
  392. [392]
    Zhu, C. B.; Yu, Y.; Gu, L.; Weichert, K.; Maier, J. Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. Angew. Chem. Int. Edit. 2011, 50, 6278–6282.Google Scholar
  393. [393]
    Liu, Y. Y.; Cao, C. B.; Li, J. Enhanced electrochemical performance of carbon nanospheres-LiFePO4 composite by PEG based sol-gel synthesis. Electrochim. Acta 2010, 55, 3921–3926.Google Scholar
  394. [394]
    Wang, K. H.; Cai, R. T.; Yuan, T. Y.; Yu, X.; Ran, R.; Shao, Z. W. Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source. Electrochim. Acta 2009, 54, 2861–2868.Google Scholar
  395. [395]
    Chen, Z.; Zhu, H.; Ji, S.; Fakir, R.; Linkov, V. Influence of carbon sources on electrochemical performances of LiFePO4/C composites. Solid. State. Ionics. 2008, 179, 1810–1815.Google Scholar
  396. [396]
    Dong, Y. Z.; Zhao, Y. M.; Chen, Y. H.; He, Z. F.; Kuang, Q. Optimized carbon-coated LiFePO4 cathode material for lithium-ion batteries. Mater. Chem. Phys. 2009, 115, 245–250.Google Scholar
  397. [397]
    Kim, J. K.; Cheruvally, G.; Ahn, J. H.; Hwang, G. C.; Choi, J. B. Electrochemical properties of carbon-coated LiFePO4 synthesized by a modified mechanical activation process. J. Phys. Chem. Solids. 2008, 69, 2371–2377.Google Scholar
  398. [398]
    Zhang, Y.; Feng, H.; Wu, X. B.; Wang, L. Z.; Zhang, A. Q.; Xia, T.; Dong, H.; Liu, M. H. One-step microwave synthesis and characterization of carbon-modified nanocrystalline LiFePO4. Electrochim. Acta 2009, 54, 3206–3210.Google Scholar
  399. [399]
    Zhou, Y. K.; Wang, J.; Hu, Y. Y.; O’Hayre, R.; Shao, Z. A porous LiFePO4 and carbon nanotube composite. Chem. Commun. 2010, 46, 7151–7153.Google Scholar
  400. [400]
    Liu, Y. J.; Li, X. H.; Guo, H.; Wang, Z. X.; Peng, W. J.; Yang, Y.; Liang, R. F. Effect of carbon nanotube on the electrochemical performance of C-LiFePO4/graphite battery. J. Power Sources 2008, 184, 522–526.Google Scholar
  401. [401]
    Liu, H.; Tang, D. The low cost synthesis of nanoparticles LiFePO4/C composite for lithium rechargeable batteries. Solid. State. Ionics. 2008, 179, 1897–1901.Google Scholar
  402. [402]
    Saravanan, K.; Balaya, P.; Reddy, M. V.; Chowdari, B. V. R.; Vittal, J. J. Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries. Energy Environ. Sci. 2010, 3, 457–464.Google Scholar
  403. [403]
    Murugan, A. V.; Muraliganth, T.; Manthiram, A. Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries. J. Phys. Chem. C 2008, 112, 14665–14671.Google Scholar
  404. [404]
    Kadoma, Y.; Kim, J.-M.; Abiko, K.; Ohtsuki, K.; Ui, K.; Kumagai, N. Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose. Electrochim. Acta 2010, 55, 1034–1041.Google Scholar
  405. [405]
    Yan, X.; Yang, G.; Liu, J.; Ge, Y.; Xie, H.; Pan, X.; Wang, R. An effective and simple way to synthesize LiFePO4/C composite. Electrochim. Acta 2009, 54, 5770–5774.Google Scholar
  406. [406]
    Wang, G.; Liu, H.; Liu, J.; Qiao, S.; Lu, G. M.; Munroe, P.; Ahn, H. Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv. Mater. 2010, 22, 4944–4948.Google Scholar
  407. [407]
    Yu, F.; Zhang, J.; Yang, Y.; Song, G. Preparation and characterization of mesoporous LiFePO4/C microsphere by spray drying assisted template method. J. Power Sources 2009, 189, 794–797.Google Scholar
  408. [408]
    Yu, F.; Zhang, J. J.; Yang, Y. F.; Song, G. Z. Up-scalable synthesis, structure and charge storage properties of porous microspheres of LiFePO4@C nanocomposites. J. Mater. Chem. 2009, 19, 9121–1925.Google Scholar
  409. [409]
    Huang, Y.; Ren, H.; Yin, S.; Wang, Y.; Peng, Z.; Zhou, Y. Synthesis of LiFePO4/C composite with high-rate performance by starch sol assisted rheological phase method. J. Power Sources 2010, 195, 610–613.Google Scholar
  410. [410]
    Chang, Z. R.; Lv, H. J.; Tang, H. W.; Li, H. J.; Yuan, X.-Z.; Wang, H. Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries. Electrochim. Acta 2009, 54, 4595–4599.Google Scholar
  411. [411]
    Gao, F.; Tang, Z. Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochim. Acta 2008, 53, 5071–5075.Google Scholar
  412. [412]
    Wang, Y. R.; Yang, Y. F.; Hu, X.; Yang, Y. B.; Shao, H. X. Electrochemical performance of Ru-doped LiFePO4/C cathode material for lithium-ion batteries. J. Alloys Compd. 2009, 481, 590–594.Google Scholar
  413. [413]
    Beninati, S.; Damen, L.; Mastragostino, M. Fast sol-gel synthesis of LiFePO4/C for high power lithium-ion batteries for hybrid electric vehicle application. J. Power Sources 2009, 194, 1094–1098.Google Scholar
  414. [414]
    Sun, C. S.; Zhou, Z.; Xu, Z. G.; Wang, D. G.; Wei, J. P.; Bian, X. K.; Yan, J. Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. J. Power Sources 2009, 193, 841–845.Google Scholar
  415. [415]
    Yu, F. Z.; Zhang, J.; Yang, Y.; Song, G. Porous micro-spherical aggregates of LiFePO4/C nanocomposites: A novel and simple template-free concept and synthesis via sol-gel-spray drying method. J. Power Sources 2010, 195, 6873–6878.Google Scholar
  416. [416]
    Oh, S. W.; Myung, S. T.; Oh, S. M.; Oh, K. H.; Amine, K.; Scrosati, B.; Sun, Y. K. Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv. Mater. 2010, 22, 4842–4845.Google Scholar
  417. [417]
    Lai, C. W.; Xu, Q.; Ge, H.; Zhou, G.; Xie, J. H. Improved electrochemical performance of LiFePO4/C for lithium-ion batteries with two kinds of carbon sources. Solid State Ionics 2008, 179, 1736–1739.Google Scholar
  418. [418]
    Liu, J. H.; Wang, J.; Yan, X.; Zhang, X. Y.; Yang, G.; Jalbout, A. F.; Wang, R. Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications. Electrochim. Acta 2009, 54, 5656–5659.Google Scholar
  419. [419]
    Jin, B.; Gu, H.-B.; Zhang, W.; Park, K. H.; Sun, G. Effect of different carbon conductive additives on electrochemical properties of LiFePO4-C/Li batteries. J. Solid. State. Electrochem. 2008, 12, 1549–1554.Google Scholar
  420. [420]
    Wu, Y. M.; Wen, Z. H.; Li, J. H. Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv. Mater. 2011, 23, 1126–1129.Google Scholar
  421. [421]
    Delmas, C.; Maccario, M.; Croguennec, L.; Le Cras, F.; Weill, F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. mater. 2008, 7, 665–671.Google Scholar
  422. [422]
    Yamada, A.; Koizumi, H.; Nishimura, S.-I.; Sonoyama, N.; Kanno, R.; Yonemura, M.; Nakamura, T.; Kobayashi, Y. Room-temperature miscibility gap in LixFePO4. Nat. Mater. 2006, 5, 357–360.Google Scholar
  423. [423]
    Malik, R.; Zhou, F.; Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 2011, 10, 587–590.Google Scholar
  424. [424]
    Nishimura, S.; Kobayashi, G.; Ohoyama, K.; Kanno, R.; Yashima, M.; Yamada, A. Experimental visualization of lithium diffusion in LixFePO4. Nat. Mater. 2008, 7, 707–711.Google Scholar
  425. [425]
    Gibot, P.; Casas-Cabanas, M.; Laffont, L.; Levasseur, S.; Carlach, P.; Hamelet, S.; Tarascon, J.-M.; Masquelier, C. Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat. Mater. 2008, 7, 741–747.Google Scholar
  426. [426]
    Hosono, E.; Wang, Y.; Kida, N.; Enomoto, M.; Kojima, N.; Okubo, M.; Matsuda, H.; Saito, Y.; Kudo, T.; Honma, I.; Zhou, H. Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method. ACS Appl. Mater. Interfaces 2010, 2, 212–218.Google Scholar
  427. [427]
    Lim, S.; Yoon, C. S.; Cho, J. Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries. Chem. Mater. 2008, 20, 4560–4564.Google Scholar
  428. [428]
    Recham, N.; Dupont, L.; Courty, M.; Djellab, K.; Larcher, D.; Armand, M.; Tarascon, J.-M. Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications. Chem. Mater. 2009, 21, 1096–1107.Google Scholar
  429. [429]
    Konarova, M.; Taniguchi, I. Physical and electrochemical properties of LiFePO4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling. J. Power Sources 2009, 194, 1029–1035.Google Scholar
  430. [430]
    Doherty, C. M.; Caruso, R. A.; Smarsly, B. M.; Drummond, C. J. Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chem. Mater. 2009, 21, 2895–2903.Google Scholar
  431. [431]
    Zheng, J. C.; Li, X. H.; Wang, Z.; Guo, H.; Zhou, S. Y. LiFePO4 with enhanced performance synthesized by a novel synthetic route. J. Power Sources 2008, 184, 574–577.Google Scholar
  432. [432]
    Qin, X.; Wang, X. H.; Xiang, H. M.; Xie, J. Mechanism for hydrothermal synthesis of LiFePO4 platelets as cathode material for lithium-ion batteries. J. Phys. Chem. C 2010, 114, 16806–16812.Google Scholar
  433. [433]
    Jin, B.; Gu, H. B. Preparation and characterization of LiFePO4 cathode materials by hydrothermal method. Solid State Ionics 2008, 178, 1907–1914.Google Scholar
  434. [434]
    Yang, H.; Wu, X. L.; Cao, M. H.; Guo, Y. G. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries. J. Phys. Chem. C 2009, 113, 3345–3351.Google Scholar
  435. [435]
    Liu, H. W.; Yang, H. Y.; Li, J. L. A novel method for preparing LiFePO4 nanorods as a cathode material for lithium-ion power batteries. Electrochim. Acta 2010, 55, 1626–1629.Google Scholar
  436. [436]
    Bilecka, I.; Hintennach, A.; Djerdj, I.; Novák, P.; Niederberger, M. Efficient microwave-assisted synthesis of LiFePO4 mesocrystals with high cycling stability. J. Mater. Chem. 2009, 19, 5125–5128.Google Scholar
  437. [437]
    Sun, C.; Rajasekhara, S.; Goodenough, J. B.; Zhou, F. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc. 2011, 133, 2132–2135.Google Scholar
  438. [438]
    Huang, Y. H.; Goodenough, J. B. High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem. Mater. 2008, 20, 7237–7241.Google Scholar
  439. [439]
    Qian, J. F.; Zhou, M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries. J. Phys. Chem. C. 2010, 114, 3477–3482.Google Scholar
  440. [440]
    Yang, S.; Zhou, X.; Zhang, J.; Liu, Z. Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries. J. Mater. Chem. 2010, 20, 8086–8091.Google Scholar
  441. [441]
    Saravanan, K.; Reddy, M. V.; Balaya, P.; Gong, H.; Chowdari, B. V. R.; Vittal, J. J. Storage performance of LiFePO4 nanoplates. J. Mater. Chem. 2009, 19, 605–610.Google Scholar
  442. [442]
    Ni, J.; Morishita, M.; Kawabe, Y.; Watada, M.; Takeichi, N.; Sakai, T. Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. J. Power Sources 2010, 195, 2877–2882.Google Scholar
  443. [443]
    Zhou, X.; Wang, F.; Zhu, Y.; Liu, Z. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem. 2011, 21, 3353–3358.Google Scholar
  444. [444]
    Liu, H.; Wang, G. X.; Wexler, D.; Wang, J. Z.; Liu, H. K. Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer. Electrochem. Commun. 2008, 10, 165–169.Google Scholar
  445. [445]
    Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 2010, 10, 4123–4127.Google Scholar
  446. [446]
    Amin, R.; Maier, J.; Balaya, P.; Chen, D. P.; Lin, C. T. Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique. Solid State Ionics 2008, 179, 1683–1687.Google Scholar
  447. [447]
    Oh, S. M.; Oh, S. W.; Yoon, C. S.; Scrosati, B.; Amine, K.; Sun, Y.-K. High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries. Adv. Funct. Mater. 2010, 20, 3260–3265.Google Scholar
  448. [448]
    Li, G.; Azuma, H.; Tohda, M. LiMnPO4 as the cathode for lithium batteries. Electrochem. Solid. State Lett. 2002, 5, A135–A137.Google Scholar
  449. [449]
    Bakenov, Z.; Taniguchi, I. Electrochemical performance of nanocomposite LiMnPO4/C cathode materials for lithium batteries. Electrochem. Commun. 2010, 12, 75–78.Google Scholar
  450. [450]
    Fang, H. S.; Pan, Z. Y.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S.; Wei, S. Q. The possibility of manganese disorder in LiMnPO4 and its effect on the electrochemical activity. Electrochem. Commun. 2008, 10, 1071–1073.Google Scholar
  451. [451]
    Vadivel Murugan, A.; Muraliganth, T.; Ferreira, P. J.; Manthiram, A. Dimensionally modulated, single-crystalline LiMPO4 (M = Mn, Fe, Co, and Ni) with nano-thumblike shapes for high-power energy storage. Inorg. Chem. 2009, 48, 946–52.Google Scholar
  452. [452]
    Drezen, T.; Kwon, N.-H.; Bowen, P.; Teerlinck, I.; Isono, M.; Exnar, I. Effect of particle size on LiMnPO4 cathodes. J. Power Sources 2007, 174, 949–953.Google Scholar
  453. [453]
    Wang, D.; Buqa, H.; Crouzet, M.; Deghenghi, G.; Drezen, T.; Exnar, I.; Kwon, N.-H.; Miners, J. H.; Poletto, L.; Grätzel, M. High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J. Power Sources 2009, 189, 624–628.Google Scholar
  454. [454]
    Bakenov, Z.; Taniguchi, I. Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons. J. Power Sources 2010, 195, 7445–7451.Google Scholar
  455. [455]
    Chen, G.; Richardson, T. J. Thermal instability of olivine-type LiMnPO4 cathodes. J. Power Sources 2010, 195, 1221–1224.Google Scholar
  456. [456]
    Wang, D.; Ouyang, C.; Drézen, T.; Exnar, I.; Kay, A.; Kwon, N.-H.; Gouerec, P.; Miners, J. H.; Wang, M.; Grätzel, M. Improving the electrochemical activity of LiMnPO4 via Mn-site substitution. J. Electrochem. Soc. 2010, 157, A225–A229.Google Scholar
  457. [457]
    Delacourt, C.; Laffont, L.; Bouchet, R.; Wurm, C.; Leriche, J.-B.; Morcrette, M.; Tarascon, J.-M.; Masquelier, C. Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J. Electrochem. Soc. 2005, 152, A913–A921.Google Scholar
  458. [458]
    Choi, D.; Wang, D.; Bae, I. T.; Xiao, J.; Nie, Z.; Wang, W.; Viswanathan, V. V.; Lee, Y. J.; Zhang, J. G.; Graff, G. L. et al. LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano. Lett. 2010, 10, 2799–2805.Google Scholar
  459. [459]
    Chen, G.; Wilcox, J. D.; Richardson, T. J. Improving the performance of lithium manganese phosphate through divalent cation substitution. Electrochem. Solid.State Lett. 2008, 11, A190–A194.Google Scholar
  460. [460]
    Allen, C.; Jia, Q.; Chinnasamy, C. Synthesis, structure and electrochemistry of lithium vanadium phosphate cathode materials. J. Electrochem. Soc. 2011, 158, 1250–1259.Google Scholar
  461. [461]
    Yang, Y.; Fang, H. S.; Zheng, J.; Li, L. P.; Li, G.; Yan, G. F. Towards the understanding of poor electrochemical activity of triclinic LiVOPO4: Experimental characterization and theoretical investigations. Solid State Sci 2008, 10, 1292–1298.Google Scholar
  462. [462]
    Azmi, B. M.; Ishihara, T.; Nishiguchi, H.; Takita, Y. LiVOPO4 as a new cathode materials for Li-ion rechargeable battery. J. Power Sources 2005, 146, 525–528.Google Scholar
  463. [463]
    Ren, M.; Zhou, Z.; Su, L. W.; Gao, X. W. LiVOPO4: A cathode material for 4V lithium ion batteries. J. Power Sources 2009, 189, 786–789.Google Scholar
  464. [464]
    Gover, R.; Burns, P.; Bryan, A.; Saidi, M.; Swoyer, J.; Barker, J. LiVPO4F: A new active material for safe lithium-ion batteries. Solid State Ionics 2006, 177, 2635–2638.Google Scholar
  465. [465]
    Zheng, J.; Zhang, B.; Yang, Z. Novel synthesis of LiVPO4F cathode material by chemical lithiation and postannealing. J. Power Sources 2012, 202, 380–383.Google Scholar
  466. [466]
    Pan, A.; Liu, J.; Zhang, J. G.; Xu, W.; Cao, G.; Nie, Z.; Arey, B. W.; Liang, S. Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries. Electrochem. Commun. 2010, 12, 1674–1677.Google Scholar
  467. [467]
    Wang, L.; Zhang, L. C.; Lieberwirth, I.; Xu, H. W.; Chen, C. H. A Li3V2(PO4)3/C thin film with high rate capability as a cathode material for lithium-ion batteries. Electrochem. Commun. 2010, 12, 52–55.Google Scholar
  468. [468]
    Zhou, X.; Liu, Y.; Guo, Y. Effect of reduction agent on the performance of Li3V2(PO4)3/C positive material by one-step solid-state reaction. Electrochim. Acta 2009, 54, 2253–2258.Google Scholar
  469. [469]
    Qiao, Y. Q.; Wang, X. L.; Zhou, Y.; Xiang, J. Y.; Zhang, D.; Shi, S. J.; Tu, J. P. Electrochemical performance of carbon-coated Li3V2(PO4)3 cathode materials derived from polystyrene-based carbon-thermal reduction synthesis. Electrochim. Acta 2010, 56, 510–516.Google Scholar
  470. [470]
    Wang, J. W.; Liu, J.; Yang, G. L.; Zhang, X. F.; Yan, X. F.; Pan, X.; Wang, R. S. Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source. Electrochim. Acta 2009, 54, 6451–6454.Google Scholar
  471. [471]
    Qiao, Y. Q.; Wang, X. L.; Xiang, J. Y.; Zhang, D.; Liu, W. L.; Tu, J. P. Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source. Electrochim. Acta 2011, 56, 2269–2275.Google Scholar
  472. [472]
    Rui, X. H.; Ding, N.; Liu, J.; Li, C.; Chen, C. H. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim. Acta 2010, 55, 2384–2390.Google Scholar
  473. [473]
    Rui, X. H.; Li, C.; Chen, C. H. Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources. Electrochim. Acta 2009, 54, 3374–3380.Google Scholar
  474. [474]
    Chang, C. X.; Xiang, J. F.; Shi, X. X.; Han, X. Y.; Yuan, L. J.; Sun, J. T. Rheological phase reaction synthesis and electrochemical performance of Li3V2(PO4)3/carbon cathode for lithium ion batteries. Electrochim. Acta 2008, 53, 2232–2237.Google Scholar
  475. [475]
    Jiang, T.; Pan, W. C.; Wang, J.; Bie, X. F.; Du, F.; Wei, Y. J.; Wang, C.; Chen, G. Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol-gel method. Electrochim. Acta 2010, 55, 3864–3869.Google Scholar
  476. [476]
    Chen, Y. H.; Zhao, Y. M.; An, X. N.; Liu, J. M.; Dong, Y. Z.; Chen, L. Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochim. Acta 2009, 54, 5844–5850.Google Scholar
  477. [477]
    Rui, X. H.; Li, C.; Liu, J.; Cheng, T.; Chen, C. H. The Li3V2(PO4)3/C composites with high-rate capability prepared by a maltose-based sol-gel route. Electrochim. Acta 2010, 55, 6761–6767.Google Scholar
  478. [478]
    Kuang, Q.; Zhao, Y. M.; An, X. N.; Liu, J. N.; Dong, Y. Z.; Chen, L. Synthesis and electrochemical properties of Co-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. Electrochim. Acta 2010, 55, 1575–1581.Google Scholar
  479. [479]
    Wang, L. N.; Li, Z. C.; Xu, H. J.; Zhang, K. L. Studies of Li3V2(PO4)3 additives for the LiFePO4-based Li ion batteries. J. Phys. Chem. C 2008, 112, 308–312.Google Scholar
  480. [480]
    Ren, M. M.; Zhou, Z.; Gao, X. P.; Peng, W. X.; Wei, J. P. Core-Shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries. J. Phys. Chem. C 2008, 112, 5689–5693.Google Scholar
  481. [481]
    Zheng, J.-C.; Li, X.-H.; Wang, Z.-X.; Guo, H.-J.; Hu, Q.-Y.; Peng, W.-J. Li3V2(PO4)3 cathode material synthesized by chemical reduction and lithiation method. J. Power Sources 2009, 189, 476–479.Google Scholar
  482. [482]
    Zhang, L.; Wang, X. L.; Xiang, J. Y.; Zhou, Y.; Shi, S. J.; Tu, J. P. Synthesis and electrochemical performances of Li3V2(PO4)3/(Ag+C) composite cathode. J. Power Sources 2010, 195, 5057–5061.Google Scholar
  483. [483]
    Tang, A. P.; Wang, X. Y.; Liu, Z. M. Electrochemical behavior of Li3V2(PO4)3/C composite cathode material for lithium-ion batteries. Mater. Lett. 2008, 62, 1646–1648.Google Scholar
  484. [484]
    Liu, H. D.; Gao, P.; Fang, J. H.; Yang, G. Li3V2(PO4)3/ graphene nanocomposites as cathode material for lithium ion batteries. Chem. Commun. 2011, 47, 9110–9112.Google Scholar
  485. [485]
    Cho, A. R.; Son, J. N.; Aravindan, V.; Kim, H.; Kang, K. S.; Yoon, W. S.; Kim, W. S.; Lee, Y. S. Carbon supported, Al doped-Li3V2(PO4)3 as a high rate cathode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 6556–6560.Google Scholar
  486. [486]
    Liu, H. D.; Yang, G.; Zhang, X. F.; Gao, P.; Wang, L.; Fang, J. H.; Pinto, J.; Jiang, X. F. Kinetics of conventional carbon coated-Li3V2(PO4)3 and nanocomposite Li3V2(PO4)3/ graphene as cathode materials for lithium ion batteries. J. Mater. Chem. 2012, 22, 11039–11047.Google Scholar
  487. [487]
    Sun, C.; Rajasekhara, S.; Dong, Y.; Goodenough, J. B. Hydrothermal synthesis and electrochemical properties of Li3V2(PO4)3/C-based composites for lithium-ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 3772–3776.Google Scholar
  488. [488]
    Xun, S. D.; Chong, J.; Song, X. Y.; Liu, G.; Battaglia, V. S. Li4P2O7 modified high performance Li3V2(PO4)3 cathode material. J. Mater. Chem. 2012, 22, 15775–15781.Google Scholar
  489. [489]
    Zhang, L.-L.; Liang, G.; Peng, G.; Zou, F.; Huang, Y.-H.; Croft, M. C.; Ignatov, A. Significantly improved electrochemical performance in Li3V2(PO4)3/C promoted by SiO2 coating for lithium-ion batteries. J. Phys. Chem. C 2012, 116, 12401–12408.Google Scholar
  490. [490]
    Saravanan, K.; Lee, H. S.; Kuezma, M.; Vittal, J. J.; Balaya, P. Hollow α-LiVOPO4 sphere cathodes for high energy Li-ion battery application. J. Mater. Chem. 2011, 21, 10042–10050.Google Scholar
  491. [491]
    Lii, K. H.; Li, C. H.; Cheng, C. Y.; Wang, S. L. Hydrothermal synthesis, structure, and magnetic properties of a new polymorph of lithium vanadyl(IV) orthophosphate: β-LiVOPO4. J. Solid State Chem. 1991, 95, 352–359.Google Scholar
  492. [492]
    Islam, M. S.; Dominko, R.; Masquelier, C.; Sirisopanaporn, C.; Armstrong, A. R.; Bruce, P. G. Silicate cathodes for lithium batteries: Alternatives to phosphates? J. Mater. Chem. 2011, 21, 9811–9818.Google Scholar
  493. [493]
    Dominko, R.; Bele, M.; Kokalj, A.; Gaberscek, M.; Jamnik, J. Li2MnSiO4 as a potential Li-battery cathode material. J. Power Sources 2007, 174, 457–461.Google Scholar
  494. [494]
    Nishimura, S.; Hayase, S.; Kanno, R.; Yashima, M.; Nakayama, N.; Yamada, A. Structure of Li2FeSiO4. J. Am. Chem. Soc. 2008, 130, 13212–13213.Google Scholar
  495. [495]
    Belharouak, I.; Abouimrane, A.; Amine, K. Structural and electrochemical characterization of Li2MnSiO4 cathode material. J. Phys. Chem. C 2009, 113, 20733–20737.Google Scholar
  496. [496]
    Boulineau, A.; Sirisopanaporn, C.; Dominko, R.; Armstrong, A. R.; Bruce, P. G.; Masquelier, C. Polymorphism and structural defects in Li2MnSiO4. Dalton Trans. 2010, 39, 6310–6316.Google Scholar
  497. [497]
    Kuganathan, N.; Islam, M. S. Li2MnSiO4 Lithium battery material: Atomic-scale study of defects, lithium mobility, and trivalent dopants. Chem. Mater. 2009, 21, 5196–5202.Google Scholar
  498. [498]
    Eames, C.; Armstrong, A. R.; Bruce, P. G.; Islam, M. S. Insights into changes in voltage and structure of Li2FeSiO4 polymorphs for lithium-ion batteries. Chem. Mater. 2012, 24, 2155–2161.Google Scholar
  499. [499]
    Sirisopanaporn, C.; Masquelier, C.; Bruce, P. G.; Armstrong, A. R.; Dominko, R. Dependence of Li2FeSiO4 electrochemistry on structure. J. Am. Chem. Soc. 2011, 133, 1263–1265.Google Scholar
  500. [500]
    Armstrong, A. R.; Kuganathan, N.; Islam, M. S.; Bruce, P. G. Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. J. Am. Chem. Soc. 2011, 133, 13031–13035.Google Scholar
  501. [501]
    Ensling, D.; Stjerndahl, M.; Nytén, A.; Gustafsson, T.; Thomas, J. O. A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes. J. Mater. Chem. 2009, 19, 82–88.Google Scholar
  502. [502]
    Lv, D. P.; Wen, W.; Huang, X. K.; Bai, J. Y.; Mi, J. X.; Wu, S. Q.; Yang, Y. A novel Li2FeSiO4/C composite: Synthesis, characterization and high storage capacity. J. Mater. Chem. 2011, 21, 9506–9512.Google Scholar
  503. [503]
    Zuo, P. J.; Wang, T.; Cheng, G. Y.; Cheng, X. Q.; Du, C. Y.; Yin, G. P. Effects of carbon on the structure and electrochemical performance of Li2FeSiO4 cathode materials for lithium-ion batteries. RSC Adv. 2012, 2, 6994–6998.Google Scholar
  504. [504]
    Li, L. M.; Guo, H. J.; Li, X. H.; Wang, Z. X.; Peng, W. J.; Xiang, K. X.; Cao, X. Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode. J. Power Sources 2009, 189, 45–50.Google Scholar
  505. [505]
    Muraliganth, T.; Stroukoff, K. R.; Manthiram, A. Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem. Mater. 2010, 22, 5754–5761.Google Scholar
  506. [506]
    Huang, X. B.; Chen, H. H.; Zhou, S. B.; Chen, Y. D.; Yang, J. F.; Ren, Y. R.; Wang, H. Y.; Qu, M. Z.; Pan, Z. L.; Yu, Z. L. Synthesis and characterization of nano-Li1.95FeSiO4/C composite as cathode material for lithium-ion batteries. Electrochim. Acta 2012, 60, 239–243.Google Scholar
  507. [507]
    Yan, Z. P.; Cai, S.; Zhou, X.; Zhao, Y. M.; Miao, L. J. Sol-gel synthesis of nanostructured Li2FeSiO4/C as cathode material for lithium ion battery. J. Electrochem. Soc. 2012, 159, A894–A898.Google Scholar
  508. [508]
    Kam, K. C.; Gustafsson, T.; Thomas, J. O. Synthesis and electrochemical properties of nanostructured Li2FeSiO4/C cathode material for Li-ion batteries. Solid State Ionics 2011, 192, 356–359.Google Scholar
  509. [509]
    Zhang, S.; Deng, C.; Yang, S. Y. Preparation of nano-Li2FeSiO4 as cathode material for lithium-ion batteries. Electrochem. Solid-State Lett. 2009, 12, A136–A139.Google Scholar
  510. [510]
    Deng, C.; Zhang, S.; Fu, B. L.; Yang, S. Y.; Ma, L. Characterization of Li2MnSiO4 and Li2FeSiO4 cathode materials synthesized via a citric acid assisted sol-gel method. Mater. Chem. Phys. 2010, 120, 14–17.Google Scholar
  511. [511]
    Gong, Z. L.; Li, Y. X.; He, G. N.; Li, J.; Yang, Y. Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process. Electrochem. Solid-State Lett. 2008, 11, A60–A63.Google Scholar
  512. [512]
    Rangappa, D.; Murukanahally, K. D.; Tomai, T.; Unemoto, A.; Honma, I. Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett. 2012, 12, 1146–1151.Google Scholar
  513. [513]
    McDowell, M. T.; Lee, S. W.; Harris, J. T.; Korgel, B. A.; Wang, C. M.; Nix, W. D.; Cui, Y. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 2013, 13, 758–764.Google Scholar
  514. [514]
    Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315–3321.Google Scholar
  515. [515]
    Wang, F.; Yu, H.-C.; Chen, M.-H.; Wu, L. J.; Pereira, N.; Thornton, K.; van der Ven, A.; Zhu, Y. M.; Amatucci, G. G.; Graetz, J. Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 2012, 3, 1201.Google Scholar
  516. [516]
    Ceder, G.; Hautier, G.; Jain, A.; Ong, S. P. Recharging lithium battery research with first-principles methods. MRS Bull. 2012, 37, 185–191.Google Scholar
  517. [517]
    Roberts, M.; Johns, P.; Owen, J.; Brandell, D.; Edstrom, K.; El Enany, G.; Guery, C.; Golodnitsky, D.; Lacey, M.; Lecoeur, C.; et al. 3D lithium ion batteries-from fundamentals to fabrication. J. Mater. Chem. 2011, 21, 9876–9890.Google Scholar
  518. [518]
    Ma, D.; Cao, Z.; Wang, H.; Huang, X.; Wang, L.; Zhang, X. Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries. Energy Environ. Sci. 2012, 5, 8538–8542.Google Scholar
  519. [519]
    Kang, D.-Y.; Kim, S.-O.; Chae, Y. J.; Lee, J. K.; Moon, J. H. Particulate inverse opal carbon electrodes for lithium-ion batteries. Langmuir 2013, 29, 1192–1198.Google Scholar
  520. [520]
    Cheah, S. K.; Perre, E.; Rooth, M.; Fondell, M.; Hårsta, A.; Nyholm, L.; Boman, M.; Gustafsson, T.; Lu, J.; Simon, P.; Edström, K. Self-supported three-dimensional nanoelectrodes for microbattery applications. Nano Lett. 2009, 9, 3230–3233.Google Scholar
  521. [521]
    Zhang, H.; Yu, X.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277–281.Google Scholar
  522. [522]
    Shao, Y.; Park, S.; Xiao, J.; Zhang, J.-G.; Wang, Y.; Liu, J. Electrocatalysts for nonaqueous lithium-air batteries: Status, challenges, and perspective. ACS Catal. 2012, 2, 844–857.Google Scholar
  523. [523]
    Lu, Y.; Gallant, B.; Kwabi, D.; Harding, J.; Mitchell, R.; Whittingham, M. S.; S-H, Y. Lithium-oxygen batteries: Bridging mechanistic understanding and battery performance. Energy Environ. Sci. 2013, 6, 750–768.Google Scholar
  524. [524]
    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.Google Scholar
  525. [525]
    Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium?air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.Google Scholar
  526. [526]
    Shao, Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J.-G.; Wang, Y.; Liu, J. Making Li-air batteries rechargeable: Material challenges. Adv. Funct. Mater. 2013, 23, 987–1004.Google Scholar
  527. [527]
    Capsoni, D.; Bini, M.; Ferrari, S.; Quartarone, E.; Mustarelli, P. Recent advances in the development of Li-air batteries. J. Power Sources 2012, 220, 253–263.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mark J. Armstrong
    • 1
  • Colm O’Dwyer
    • 2
  • William J. Macklin
    • 4
  • Justin. D. Holmes
    • 1
    • 3
  1. 1.Materials Chemistry & Analysis Group, Department of Chemistry and the Tyndall National InstituteUniversity College CorkCorkIreland
  2. 2.Applied Nanoscience Group, Department of Chemistry and the Tyndall National InstituteUniversity College CorkCorkIreland
  3. 3.Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)Trinity College DublinDublin 2Ireland
  4. 4.Nexeon LimitedAbingdon, OxfordshireUK

Personalised recommendations