Skip to main content
Log in

Koutecky-Levich analysis applied to nanoparticle modified rotating disk electrodes: Electrocatalysis or misinterpretation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript


The application of naive Koutecky-Levich analysis to micro- and nano-particle modified rotating disk electrodes of partially covered and non-planar geometry is critically analysed. Assuming strong overlap of the diffusion fields of the particles such that transport to the entire surface is time-independent and one-dimensional, the observed voltammetric response reflects an apparent electrochemical rate constant k oapp , equal to the true rate constant k o describing the redox reaction of interest on the surface of the nanoparticles and the ratio, ψ, of the total electroactive surface area to the geometric area of the rotating disk surface. It is demonstrated that Koutecky-Levich analysis is applicable and yields the expected plots of I −1 versus ω −1 where I is the current and ω is the rotation speed but that the values of the electrochemical rate constants inferred are thereof k oapp , not k o. Thus, for ψ > 1 apparent electrocatalysis might be naively but wrongly inferred whereas for ψ < 1 the deduced electrochemical rate constant will be less than k o. Moreover, the effect of ψ on the observed rotating disk electrode voltammograms is significant, signalling the need for care in the overly simplistic application of Koutecky-Levich analysis to modified rotating electrodes, as is commonly applied for example in the analysis of possible oxygen reduction catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Ward, K. R.; Gara, M.; Lawrence, N. S.; Hartshorne, R. S.; Compton, R. G. Nanoparticle modified electrodes can show an apparent increase in electrode kinetics due solely to altered surface geometry: The effective electrochemical rate constant for non-flat and non-uniform electrode surfaces. J. Electroanal. Chem. 2013, 695, 1–9.

    Article  Google Scholar 

  2. Davies, T. J.; Compton, R. G. The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory. J. Electroanal. Chem. 2005, 585, 63–82.

    Article  Google Scholar 

  3. Davies, T. J.; Ward-Jones, S.; Banks, C. E.; del Campo, J.; Mas, R.; Muñoz, F. X.; Compton, R. G. The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Fitting of experimental data. J. Electroanal. Chem. 2005, 585, 51–62.

    Article  Google Scholar 

  4. Amatore, C.; Savéant, J. M.; Tessier, D. Charge transfer at partially blocked surfaces: A model for the case of microscopic active and inactive sites. J. Electroanal. Chem. 1983, 147, 39–51.

    Article  Google Scholar 

  5. Gara, M.; Ward, K. R.; Compton, R. G. Nanomaterial modified electrodes: Evaluating oxygen reduction catalysts. Nanoscale 2013, 5, 7304–7311.

    Article  Google Scholar 

  6. Mayrhofer, K. J. J.; Strmcnik, D.; Blizanac, B. B.; Stamenkovic, V.; Arenz, M.; Markovic, N. M. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 2008, 53, 3181–3188.

    Article  Google Scholar 

  7. Mayrhofer, K. J. J.; Blizanac, B. B.; Arenz, M.; Stamenkovic, V. R.; Ross, P. N.; Markovic, N. M. The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J. Phys. Chem. B 2005, 109, 14433–14440.

    Article  Google Scholar 

  8. Ke, K.; Hiroshima, K.; Kamitaka, Y.; Hatanaka, T.; Morimoto Y. An accurate evaluation for the activity of nano-sized electrocatalysts by a thin-film rotating disk electrode: Oxygen reduction on Pt/C. Electrochim. Acta 2012, 72, 120–128.

    Article  Google Scholar 

  9. Murthi, V. S.; Urian, R. C.; Mukerjee, S. Oxygen reduction kinetics in low and medium temperature acid environment: Correlation of water activation and surface properties in supported Pt and Pt alloy electrocatalysts. J. Phys. Chem. B 2004, 108, 11011–11023.

    Article  Google Scholar 

  10. Liu, R. L.; Wu, D. Q.; Feng, X. L.; Müllen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. Int. Ed. 2010, 122, 2619–2623.

    Article  Google Scholar 

  11. Erikson, H.; Sarapuu, A.; Alexeyeva, N.; Tammeveski, K.; Solla-Gullón, J.; Feliu, J. M. Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochim. Acta 2012, 59, 329–335.

    Article  Google Scholar 

  12. Inasaki, T.; Kobayashi, S. Particle size effects of gold on the kinetics of the oxygen reduction at chemically prepared Au/C catalysts. Electrochim. Acta 2009, 54, 4893–4897.

    Article  Google Scholar 

  13. Guo, S. J.; Sun, S. H. FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 2492–2495.

    Article  Google Scholar 

  14. Liu, L. C.; Samjeske, G.; Nagamatsu, S.; Sekizawa, O.; Nagasawa, K.; Takao, S.; Imaizumi, Y.; Yamamoto, T.; Uruga, T.; Iwasawa, Y. Enhanced oxygen reduction reaction activity and charaterization of Pt-Pd/C bimetallic fuel cell catalysts with Pt-enriched surfaces in acid media. J. Phys. Chem. C 2012, 116, 23453–23464.

    Article  Google Scholar 

  15. Zoski, C. G.; Fernández, J. L.; Imaduwage, K.; Gunasekara, D.; Vadari, R. Evaluation of the intrinsic kinetic activity of nanoparticle ensembles under steady-state conditions. J. Electroanal. Chem. 2011, 651, 80–93.

    Article  Google Scholar 

  16. Jirkovský, J. S.; Halasa, M.; Schiffrin, D. J. Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles. Phys. Chem. Chem. Phys. 2010, 12, 8042–8052.

    Article  Google Scholar 

  17. Jaouen, F.; Proietti, E.; Lefèvre, M.; Chenitz, R.; Dodelet, J. P.; Wu, G.; Chung, H. T.; Johnston, C. M.; Zelenay, P. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 2011, 4, 114–130.

    Article  Google Scholar 

  18. Si, W.; Li, J.; Li, H.; Li, S.; Yin, J.; Xu, H.; Guo, X.; Zhang, T.; Song, Y. Light-controlled synthesis of uniform platinum nanodendrites with markedly enhanced electrocatalytic activity. Nano Res. 2013, 6, 720–725.

    Article  Google Scholar 

  19. Pleskov, Y. V.; Filinovskii, V. Y. The Rotating Disc Electrode; Plenum Press: New York, 1976.

    Book  Google Scholar 

  20. Koutecky, J.; Levich, V. G. The use of a rotating disk electrode in the studies of electrochemical kinetics and electrolytic processes. Zh. Fiz. Khim. 1958, 32, 1565–1575.

    Google Scholar 

  21. Koutecky, J.; Levich, V. G. An application of a rotating disk electrode to the studies of kinetic and catalytic processes in electrochemistry. Dokl. Akad. Nauk SSSR 1957, 117, 441–444.

    Google Scholar 

  22. Levich, V. G. Physicochemical Hydrodynamics; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1962; pp 345.

    Google Scholar 

  23. Jahn, D.; Vielstich, W. Rates of electrode processes by the rotating disk method. J. Electrochem. Soc. 1962, 107, 849–852.

    Article  Google Scholar 

  24. Treimer, S.; Tang, A.; Johnson, D. C. A consideration of the application of Koutecký-Levich lots in the diagnoses of charge-transfer mechanisms at rotated disk electrodes. Electroanalysis 2002, 14, 165–171.

    Article  Google Scholar 

  25. Bard, A. J.; Faulkner, L. R. Electrochemical methods: Fundamentals and applications; Wiley India Pvt. Ltd, 2004; pp 335–347.

    Google Scholar 

  26. Kongkanand, A.; Kuwabata, S.; Girishkumar, G.; Kamat, P. Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir 2006, 22, 2392–2396.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Richard G. Compton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masa, J., Batchelor-McAuley, C., Schuhmann, W. et al. Koutecky-Levich analysis applied to nanoparticle modified rotating disk electrodes: Electrocatalysis or misinterpretation. Nano Res. 7, 71–78 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: