Nano Research

, Volume 6, Issue 12, pp 921–928 | Cite as

WS2 nanoflakes from nanotubes for electrocatalysis

  • Charina L. Choi
  • Ju Feng
  • Yanguang Li
  • Justin Wu
  • Alla Zak
  • Reshef Tenne
  • Hongjie Dai
Research Article

Abstract

Next-generation catalysts for water splitting are crucial towards a renewable hydrogen economy. MoS2 and WS2 represent earth-abundant, noble metal cathode alternatives with high catalytic activity at edge sites. One challenge in their development is to nanostructure these materials in order to achieve increased performance through the creation of additional edge sites. In this work, we demonstrate a simple route to form nanostructured-WS2 using sonochemical exfoliation to break interlayer and intralayer bonds in WS2 nanotubes. The resulting few-layer nanoflakes are ∼100 nm wide with a high density of edge sites. WS2 nanoflakes are utilized as cathodes for the hydrogen evolution reaction (HER) and exhibit superior performance to WS2 nanotubes and bulk particles, with a lower onset potential, shallower Tafel slope and increased current density. Future work may employ ultra-small nanoflakes, dopant atoms, or graphene hybrids to further improve electrocatalytic activity.

Keywords

tungsten disulfide nanotubes nanostructuring hydrogen evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_369_MOESM1_ESM.pdf (1006 kb)
Supplementary material, approximately 825 KB.

References

  1. [1]
    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.PubMedCrossRefGoogle Scholar
  2. [2]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.PubMedCrossRefADSGoogle Scholar
  3. [3]
    Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100, 13226–13239.CrossRefGoogle Scholar
  4. [4]
    Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.PubMedCrossRefADSGoogle Scholar
  5. [5]
    Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2009, 140, 219–231.CrossRefADSGoogle Scholar
  6. [6]
    Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.PubMedCrossRefADSGoogle Scholar
  7. [7]
    Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.PubMedCrossRefGoogle Scholar
  8. [8]
    Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in WS2 monolayers. arXiv:1208.1325 [cond-mat.mes-hall], 2012.Google Scholar
  9. [9]
    Brorson, M.; Carlsson, A.; Topsoe, H. The morphology of MoS2, WS2, Co-Mo-S, Ni-Mo-S and Ni-W-S nanoclusters in hydrodesulfurization catalysts revealed by HAADF-STEM. Catal. Today 2007, 123, 31–36.CrossRefGoogle Scholar
  10. [10]
    Wu, Z.; Fang, B.; Bonakdarpour, A.; Sun, A.; Wilkinson, D. P.; Wang, D. WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction. Appl. Catal. B: Environ. 2012, 125, 59–66.CrossRefGoogle Scholar
  11. [11]
    Bhandavat, R.; David, L.; Singh, G. Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 2012, 3, 1523–1530.CrossRefGoogle Scholar
  12. [12]
    Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.; Eda, G.; et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. arXiv:1212.1513, 2013.Google Scholar
  13. [13]
    Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed. 2010, 49, 4059–4062.CrossRefGoogle Scholar
  14. [14]
    Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992, 360, 444–446.CrossRefADSGoogle Scholar
  15. [15]
    Zak, A.; Sallacan-Ecker, L.; Margolin, A.; Feldman, Y.; Popovitz-Biro, R.; Albu-Yaron, A.; Genut, M.; Tenne, R. Scaling up of the WS2 nanotubes synthesis. Fuller. Nanotube. Car. N. 2011, 19, 18–26.CrossRefGoogle Scholar
  16. [16]
    Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 2010, 5, 321–325.PubMedCrossRefADSGoogle Scholar
  17. [17]
    Zhou, K.-G.; Mao, N.-N.; Wang, H.-X.; Peng, Y.; Zhang, H.-L. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 2011, 50, 10839–10842.CrossRefGoogle Scholar
  18. [18]
    Yang, D.; Frindt, R. F. Li-intercalation and exfoliation of WS2. J. Phys. Chem. Sol. 1996, 57, 1113–1116.CrossRefADSGoogle Scholar
  19. [19]
    Krause, M.; Viršek, M.; Remškar, M.; Sallacan, N.; Fleischer, N.; Chen, L.; Hatto, P.; Kolitsch, A.; Möller, W. Diameter and morphology dependent Raman signatures of WS2 nanostructures. ChemPhysChem 2009, 10, 2221–2225.PubMedCrossRefGoogle Scholar
  20. [20]
    Krause, M.; Viršek, M.; Remškar, M.; Kolitsch, A.; Möller, W. Diameter dependent Raman scattering of WS2 nanotubes. Phys. Status. Solidi. B 2009, 246, 2786–2789.CrossRefADSGoogle Scholar
  21. [21]
    Feldman, Y.; Frey, G. L.; Homyonfer, M.; Lyakhovitskaya, V.; Margulis, L.; Cohen, H.; Hodes, G.; Hutschinson, J. L.; Tenne, R. Bulk synthesis of inorganic fullerene-like MS2 (M = Mo, W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 1996, 118, 5362–5367.CrossRefGoogle Scholar
  22. [22]
    Molina-Sanchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.CrossRefADSGoogle Scholar
  23. [23]
    Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.PubMedCrossRefGoogle Scholar
  24. [24]
    Wieting, T. J.; Verble, J. L. Interlayer bonding and lattice-vibrations of β-GaSe. Phys. Rev. B 1972, 5, 1473–1479.CrossRefADSGoogle Scholar
  25. [25]
    Staiger, M.; Rafailov, P.; Gartsman, K.; Telg, H.; Krause, M.; Radovsky, G.; Zak, A.; Thomsen, C. Excitonic resonances in WS2 nanotubes. Phys. Rev. B 2012, 86, 165423.CrossRefADSGoogle Scholar
  26. [26]
    Coehoorn, R.; Haas, C.; Dijkstra, J.; Flipse, C. J. F. Electronic-structure of MoSe2, MoS2, and WSe2. 1. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 1987, 35, 6195–6202.CrossRefADSGoogle Scholar
  27. [27]
    Coehoorn, R.; Hass, C.; de Groot, R. A. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B 1987, 35, 6203–6206.CrossRefADSGoogle Scholar
  28. [28]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.PubMedCrossRefADSGoogle Scholar
  29. [29]
    Frey, G. L.; Elani, S.; Homyonfer, M.; Feldman, Y.; Tenne, R. Optical-absorption spectra of inorganic fullerenelike MS2 (M = Mo, W). Phys. Rev. B 1998, 57, 6666–6671.CrossRefADSGoogle Scholar
  30. [30]
    Kam, K. K.; Parkinson, B. A. Detailed photocurrent spectroscopy of the semiconducting group-VI transitionmetal dichalcogenides. J. Phys. Chem. 1982, 86, 463–467.CrossRefGoogle Scholar
  31. [31]
    Ding, Y.; Wang, Y.; Ni, J.; Shi, L.; Shi, S.; Tang, W. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M = Mo, Nb, W, Ta; X = S, Se, Te) monolayers. Physica B 2011, 406, 2254–2260.CrossRefADSGoogle Scholar
  32. [32]
    Chen, Z.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168–4175.PubMedCrossRefADSGoogle Scholar
  33. [33]
    Liang, Y.; Li, Y.; Wang, H.; Dai, H. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036.PubMedCrossRefGoogle Scholar
  34. [34]
    Wang, H.; Dai, H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.PubMedCrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Charina L. Choi
    • 1
  • Ju Feng
    • 1
  • Yanguang Li
    • 1
  • Justin Wu
    • 1
  • Alla Zak
    • 2
  • Reshef Tenne
    • 3
  • Hongjie Dai
    • 1
  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.Department of ScienceHolon Academic Institute of TechnologyHolonIsrael
  3. 3.Department of Materials and InterfacesWeizmann InstituteRehovotIsrael

Personalised recommendations