Advertisement

Nano Research

, Volume 6, Issue 12, pp 906–920 | Cite as

Comparative study of gel-based separated arcdischarge, HiPCO, and CoMoCAT carbon nanotubes for macroelectronic applications

  • Jialu Zhang
  • Hui Gui
  • Bilu Liu
  • Jia Liu
  • Chongwu Zhou
Research Article

Abstract

Due to their excellent electrical properties and compatibility with room-temperature deposition/printing processing, high-purity single-walled semiconducting carbon nanotubes hold great potential for macroelectronic applications such as in thin-film transistors and display back-panel electronics. However, the relative advantages and disadvantages of various nanotubes for macroelectronics remains an open issue, despite the great significance. Here in this paper, we report a comparative and systematic study of three kinds of mainstream carbon nanotubes (arc-discharge, HiPCO, CoMoCAT) separated using low-cost gel-based column chromatography for thin-film transistor applications, and high performance transistors-which satisfy the requirements for transistors used in active matrix organic light-emitting diode displays-have been achieved. We observe a trade-off between transistor mobility and on/off ratio depending on the nanotube diameter. While arc-discharge nanotubes with larger diameters lead to high device mobility, HiPCO and CoMoCAT nanotubes with smaller diameters can provide high on/off ratios (> 106) for transistors with comparable dimensions. Furthermore, we have also compared gel-based separated nanotubes with nanotubes separated using the density gradient ultracentrifuge (DGU) method, and find that gel-separated nanotubes can offer purity and thin-film transistor performance as good as DGU-separated nanotubes. Our approach can serve as the critical foundation for future carbon nanotube-based thin-film macroelectronics.

Keywords

separated carbon nanotubes thin-film transistors gel-based column chromatography purity of semiconducting nanotubes diameter-dependence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_368_MOESM1_ESM.pdf (733 kb)
Supplementary material, approximately 426 KB.

References

  1. [1]
    Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.CrossRefADSGoogle Scholar
  2. [2]
    Bockrath, M.; Cobden, D. H.; McEuen, P. L.; Chopra, N. G.; Zettl, A.; Thess, A.; Smalley, R. E. Single-electron transport in ropes of carbon nanotubes. Science 1997, 275, 1922–1925.PubMedCrossRefGoogle Scholar
  3. [3]
    Odom, T. W.; Huang, J. L.; Kim, P.; Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64.CrossRefADSGoogle Scholar
  4. [4]
    Wilder, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, 59–62.CrossRefADSGoogle Scholar
  5. [5]
    Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Logic circuits with carbon nanotube transistors. Science 2001, 294, 1317–1320.PubMedCrossRefADSGoogle Scholar
  6. [6]
    Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.PubMedCrossRefADSGoogle Scholar
  7. [7]
    Chen, Z. H.; Appenzeller, J.; Lin, Y. M.; Sippel-Oakley, J.; Rinzler, A. G.; Tang, J. Y.; Wind, S. J.; Solomon, P. M.; Avouris, P. An integrated logic circuit assembled on a single carbon nanotube. Science 2006, 311, 1735.PubMedCrossRefGoogle Scholar
  8. [8]
    Liu, X. L.; Lee, C. L.; Zhou, C. W.; Han, J. Carbon nanotube field-effect inverters. Appl. Phys. Lett. 2001, 79, 3329–3331.CrossRefADSGoogle Scholar
  9. [9]
    Ryu, K. M.; Badmaev, A.; Wang, C.; Lin, A.; Patil, N.; Gomez, L.; Kumar, A.; Mitra, S.; Wong, H. S. P.; Zhou, C. W. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett. 2009, 9, 189–197.PubMedCrossRefADSGoogle Scholar
  10. [10]
    Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.PubMedCrossRefADSGoogle Scholar
  11. [11]
    Ding, L.; Zhang, Z. Y.; Liang, S. B.; Pei, T.; Wang, S.; Li, Y.; Zhou, W. W.; Liu, J.; Peng, L. M. CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat. Commun. 2012, 3, 667.CrossRefGoogle Scholar
  12. [12]
    Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858–862.PubMedCrossRefADSGoogle Scholar
  13. [13]
    Wang, C.; Zhang, J. L.; Ryu, K. M.; Badmaev, A.; De Arco, L. G.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.PubMedCrossRefADSGoogle Scholar
  14. [14]
    Snell, A. J.; Mackenzie, K. D.; Spear, W. E.; LeComber, P. G.; Hughes, A. J. Application of amorphous-silicon field-effect transistors in addressable liquidcrystal display panels. Appl. Phys. 1981, 24, 357–362.CrossRefADSGoogle Scholar
  15. [15]
    Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918.PubMedCrossRefADSGoogle Scholar
  16. [16]
    Gelinck, G. H.; Huitema, H. E.; van Veenendaal, E.; Cantatore, E.; Schrijnemakers, L.; van der Putten, J. B. P. H.; Geuns, T. C. T.; Beenhakkers, M.; Giesbers, J. B.; Huisman, B. H. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 2004, 3, 106–110.PubMedCrossRefADSGoogle Scholar
  17. [17]
    Klauk, H.; Halik, M.; Zschieschang, U.; Eder, F.; Rohde, D.; Schmid, G.; Dehm, C. Flexible organic complementary circuits. IEEE Trans. Electron Devices 2005, 52, 618–622.CrossRefADSGoogle Scholar
  18. [18]
    Uchikoga, S. Low-temperature polycrystalline silicon thin-film transistor technologies for system-on-glass displays. MRS Bull. 2002, 27, 881–886.CrossRefGoogle Scholar
  19. [19]
    Chang, C. P.; Wu, Y. S. Improved electrical performance of MILC poly-Si TFTs using CF4 plasma by etching surface of channel. IEEE Electron Device Lett. 2009, 30, 130–132.CrossRefADSGoogle Scholar
  20. [20]
    Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 2003, 300, 1269–1272.PubMedCrossRefADSGoogle Scholar
  21. [21]
    Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.PubMedCrossRefADSGoogle Scholar
  22. [22]
    Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 2005, 5, 713–718.PubMedCrossRefADSGoogle Scholar
  23. [23]
    Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.PubMedCrossRefADSGoogle Scholar
  24. [24]
    Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C.; Avouris, P. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2008, 2, 2445–2452.PubMedCrossRefGoogle Scholar
  25. [25]
    Sangwan, V. K.; Ortiz, R. P.; Alaboson, J. M. P.; Emery, J. D.; Bedzyk, M. J.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 2012, 6, 7480–7488.PubMedCrossRefGoogle Scholar
  26. [26]
    Wang, C.; Zhang, J. L.; Zhou, C. W. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. ACS Nano 2010, 4, 7123–7132.PubMedCrossRefGoogle Scholar
  27. [27]
    Zhang, J. L.; Wang, C.; Fu, Y.; He, Y. C.; Zhou, C. W. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-kappa oxide and its application in CMOS logic circuits. ACS Nano 2011, 5, 3284–3292.PubMedCrossRefGoogle Scholar
  28. [28]
    Zhang, J. L.; Wang, C.; Zhou, C. W. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics. ACS Nano 2012, 6, 7412–7419.MathSciNetPubMedCrossRefGoogle Scholar
  29. [29]
    Zhang, J. L.; Fu, Y.; Wang, C.; Chen, P. C.; Liu, Z. W.; Wei, W.; Wu, C.; Thompson, M. E.; Zhou, C. W. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. Nano Lett. 2011, 11, 4852–4858.PubMedCrossRefADSGoogle Scholar
  30. [30]
    Tanaka, T.; Jin, H. H.; Miyata, Y.; Fujii, S.; Suga, H.; Naitoh, Y.; Minari, T.; Miyadera, T.; Tsukagoshi, K.; Kataura, H. Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett. 2009, 9, 1497–1500.PubMedCrossRefADSGoogle Scholar
  31. [31]
    Moshammer, K.; Hennrich, F.; Kappes, M. M. Selective suspension in aqueous sodium dodecyl sulfate according to electronic structure type allows simple separation of metallic from semiconducting single-walled carbon nanotubes. Nano Res. 2009, 2, 599–606.CrossRefGoogle Scholar
  32. [32]
    Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309.PubMedCrossRefPubMedCentralADSGoogle Scholar
  33. [33]
    Gui, H.; Li, H. B.; Tan, F. R.; Jin, H. H.; Zhang, J.; Li, Q. W. Binary gradient elution of semiconducting single-walled carbon nanotubes by gel chromatography for their separation according to chirality. Carbon 2012, 50, 332–335.CrossRefGoogle Scholar
  34. [34]
    Miyata, Y.; Shiozawa, K.; Asada, Y.; Ohno, Y.; Kitaura, R.; Mizutani, T.; Shinohara, H. Length-sorted semiconducting carbon nanotubes for high-mobility thin film transistors. Nano Res. 2011, 4, 963–970.CrossRefGoogle Scholar
  35. [35]
    Miyata, Y.; Yanagi, K.; Maniwa, Y.; Kataura, H. Optical evaluation of the metal-to-semiconductor ratio of single-wall carbon nanotubes. J. Phys. Chem. C 2008, 112, 13187–13191.CrossRefGoogle Scholar
  36. [36]
    Nirmalraj, P. N.; Lyons, P. E.; De, S.; Coleman, J. N.; Boland, J. J. Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 2009, 9, 3890–3895.PubMedCrossRefGoogle Scholar
  37. [37]
    Asada, Y.; Nihey, F.; Ohmori, S.; Shinohara, H.; Saito, T. Diameter-dependent performance of single-walled carbon nanotube thin-film transistors. Adv. Mater. 2011, 23, 4631–4635.PubMedCrossRefGoogle Scholar
  38. [38]
    Pike, G. E.; Seager, C. H. Percolation and conductivity: A computer study. I. Phys. Rev. B 1974, 10, 1421–1434.CrossRefADSGoogle Scholar
  39. [39]
    Kwon, O. K. TFT mobility requirement for AMOLED HDTVs. Thin film transistor technologies (TFTT VII): proceedings of the international symposium 2004, 146.Google Scholar
  40. [40]
    Gu, G.; Forrest, S. R. Design of flat-panel displays based on organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 1998, 4, 83–99.CrossRefGoogle Scholar
  41. [41]
    Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.PubMedCrossRefADSGoogle Scholar
  42. [42]
    Cao, Q.; Xia, M. G.; Kocabas, C.; Shim, M.; Rogers, J. A.; Rotkin, S. V. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 2007, 90, 023516.CrossRefADSGoogle Scholar
  43. [43]
    Rosenblatt, S.; Yaish, Y.; Park, J.; Gore, J.; Sazonova, V.; McEuen, P. L. High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2002, 2, 869–872.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jialu Zhang
    • 1
  • Hui Gui
    • 2
  • Bilu Liu
    • 1
  • Jia Liu
    • 3
  • Chongwu Zhou
    • 1
  1. 1.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Material ScienceUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations