Nano Research

, Volume 6, Issue 12, pp 897–905 | Cite as

Coulomb drag between in-plane graphene double ribbons and the impact of the dielectric constant

Research Article


With recent developments in the search for novel device ideas, understanding electron-electron interaction in low dimensional systems is of particular interest. Coulomb drag measurements can provide critical insights in this context. In this article, we present a novel planar graphene double ribbon structure that shows for the first time that Coulomb drag is observable in two adjacent monolayer ribbons in the same plane at room temperature. Moreover, our planar devices enable experimentally study of the impact of the dielectric constant on Coulomb drag which is difficult to explore in the typically used double layer graphene structures. Our experimental findings indicate in particular that the drag resistance is proportional to the dielectric constant (ε) and does not, as recently reported, show an increasing trend of interaction strength for small ε-values. In fact, we find that the drag resistance follows approximately an ε 1.2-dependence. The exponent of “1.2” is consistent with the theory considering the carrier concentration in our samples, and positions our results in between the weak and strong coupling limits.


Coulomb drag graphene ribbon dielectric scattering electron-electron interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Eisenstein, J. P.; Macdonald, A. H. Bose-Einstein condensation of excitons in bilayer electron systems. Nature 2004, 432, 691–694.PubMedCrossRefADSGoogle Scholar
  2. [2]
    Datta, S.; Melloch, M.; Gunshor, R. Possibility of an excitonic ground state in quantum wells. Phys. Rev. B 1985, 32, 2607–2609.CrossRefADSGoogle Scholar
  3. [3]
    Shevchenko, S. Phase diagram of systems with pairing of spatially separated electrons and holes. Phys. Rev. Lett. 1994, 72, 3242–3245.PubMedCrossRefADSGoogle Scholar
  4. [4]
    Shevchenko, S. Quantized vortices in systems with pairing of spatially separated electrons and holes. Low Temp. Phys. 1997, 23, 741.CrossRefADSGoogle Scholar
  5. [5]
    Yoon, Y.; Tiemann, L.; Schmult, S.; Dietsche, W.; von Klitzing, K. Interlayer tunneling in counterflow experiments on the excitonic condensate in quantum hall bilayers. Phys. Rev. Lett. 2010, 104, 116802.PubMedCrossRefADSGoogle Scholar
  6. [6]
    Tutuc, E.; Shayegan, M. Charge neutral counterflow transport at filling factor 1 in GaAs hole bilayers. Solid State Commun. 2007, 144, 405–408.CrossRefADSGoogle Scholar
  7. [7]
    Min, H.; Bistritzer, R.; Su, J.; MacDonald, A. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B. 2008, 78, 121401–121404.CrossRefADSGoogle Scholar
  8. [8]
    Su, J. J.; MacDonald, A. H. How to make a bilayer exciton condensate flow. Nat. Phys. 2008, 4, 799–802.CrossRefGoogle Scholar
  9. [9]
    Min, H.; Bistritzer, R.; Su, J.; MacDonald, A. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B 2008, 78, 121401.CrossRefADSGoogle Scholar
  10. [10]
    Gramila, T.; Eisenstein, J.; MacDonald, A.; Pfeiffer, L.; West, K. Mutual friction between parallel two-dimensional electron systems. Phys. Rev. Lett. 1991, 66, 1216–1219.PubMedCrossRefADSGoogle Scholar
  11. [11]
    Sivan, U.; Solomon, P.; Shtrikman, H. Coupled electron-hole transport. Phys. Rev. Lett. 1992, 68, 1196–1199.PubMedCrossRefADSGoogle Scholar
  12. [12]
    Solomon, P.; Price, P.; Frank, D.; La Tulipe, D. New phenomena in coupled transport between 2D and 3D electron-gas layers. Phys. Rev. Lett. 1989, 63, 2508–2511.PubMedCrossRefADSGoogle Scholar
  13. [13]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.PubMedCrossRefADSGoogle Scholar
  14. [14]
    Gorbachev, R. V.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Tudorovskiy, T.; Grigorieva, I. V.; MacDonald, A. H.; Morozov, S. V.; Watanabe, K.; Taniguchi, T. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nat. Phys. 2012, 8, 896–901.CrossRefGoogle Scholar
  15. [15]
    Kim, S.; Tutuc, E. Coulomb drag and magnetotransport in graphene double layers. Solid State Commun. 2012, 152, 1283–1288.CrossRefADSGoogle Scholar
  16. [16]
    Kim, S.; Dillen, I. Jo. D.; Ferrer, D.; Fallahazad, B.; Yao, Z.; Banerjee, S.; Tutuc, E. Direct measurement of the fermi energy in graphene using a double-layer heterostructure. Phys. Rev. Lett. 2012, 108, 116404–116408.PubMedCrossRefADSGoogle Scholar
  17. [17]
    Kim, S.; Jo, I.; Nah, J.; Yao, Z.; Banerjee, S.; Tutuc, E. Coulomb drag of massless fermions in graphene. Phys. Rev. B 2011, 83, 161401–161404.CrossRefADSGoogle Scholar
  18. [18]
    Tse, W. K.; Hu, B.; Das Sarma, S. Theory of Coulomb drag in graphene. Phys. Rev. B 2007, 76, 081401–081404.CrossRefADSGoogle Scholar
  19. [19]
    Hwang, E.; Sensarma, R.; Das Sarma, S. Coulomb drag in monolayer and bilayer graphene Phys. Rev. B 2011, 84, 245441–245449.CrossRefADSGoogle Scholar
  20. [20]
    Katsnelson, M. Coulomb drag in graphene single layers separated by a thin spacer. Phys. Rev. B 2011, 84, 041407–041409.CrossRefADSGoogle Scholar
  21. [21]
    Peres, N. M. R.; Lopes dos Santos, J. M. B.; Castro Neto, A. H. Coulomb drag and high resistivity behavior in double layer graphene. Europhys. Lett. 2011, 95, 18001.CrossRefADSGoogle Scholar
  22. [22]
    Carrega, M.; Tudorovskiy, T.; Katsnelson, M. I.; Polini, M. Theory of Coulomb drag for massless Dirac fermions. New J. Phys. 2012, 14, 063033.CrossRefADSGoogle Scholar
  23. [23]
    Bernstein, K.; Cavin, R. K.; Porod, W.; Seabaugh, A.; Welser, J. Device and architecture outlook for beyond CMOS switches. Proc. IEEE. 2010, 98, 2169–2184.CrossRefGoogle Scholar
  24. [24]
    Chen, C. T.; Low, T.; Chiu, H. Y.; Zhu, W. Graphene-sidegate engineering. IEEE Electron Device Lett. 2012, 33, 330–332.CrossRefADSGoogle Scholar
  25. [25]
    Hähnlein, B.; Händel, B.; Pezoldt, J.; Töpfer, H.; Granzner, R.; Schwierz, F. Side-gate graphene field-effect transistors with high transconductance. Appl. Phys. Lett. 2012, 101, 093504.CrossRefADSGoogle Scholar
  26. [26]
    Li, X.; Wu, X.; Sprinkle, M.; Ming, F.; Ruan, M.; Hu, Y.; Berger, C.; de Heer, W. Top- and side-gated epitaxial graphene field effect transistors. Phys. Status Solidi A. 2010, 207, 286–290.CrossRefADSGoogle Scholar
  27. [27]
    Tian, J. F.; Jauregui, L.; Lopez, G.; Cao, H.; Chen, Y. P. Ambipolar graphene field effect transistors by local metal side gates. Appl. Phys. Lett. 2010, 96, 263110.CrossRefADSGoogle Scholar
  28. [28]
    Molitor, F.; Jacobsen, A.; Stampfer, C.; Guttinger, J.; Ihn, T.; Ensslin, K. Transport gap in side-gated graphene constrictions. Phys. Rev. B 2009, 79, 075426.CrossRefADSGoogle Scholar
  29. [29]
    Molitor, F.; Guttinger, J.; Stampfer, C.; Graf, D.; Ihn, T.; Ensslin, K. Local gating of a graphene Hall bar by graphene side gates. Phys. Rev. B 2007, 76, 245426–245430.CrossRefADSGoogle Scholar
  30. [30]
    Chen, H. Y.; Appenzeller, J. Graphene-based frequency tripler. Nano lett. 2012, 12, 2067–2070.PubMedCrossRefADSGoogle Scholar
  31. [31]
    Chen, H. Y.; Appenzeller, J. Complementary-type graphene inverters operating at room-temperature Device Res. Conf. 2011, 33–34.Google Scholar
  32. [32]
    Chen H. Y.; Appenzeller, J. On the voltage gain of complementary graphene voltage amplifiers with optimized doping. IEEE Electron Device Lett. 2012, 33, 1462–1464.CrossRefADSGoogle Scholar
  33. [33]
    The voltage detection unit has a very large impedance (10 Mohm) to ground and hence the drag channel (< 150 kohm) can be considered floatingGoogle Scholar
  34. [34]
    Yamamoto, M.; Stopa, M.; Tokura, Y.; Hirayama, Y.; Tarucha, S. Negative Coulomb drag in a one-dimensional wire. Science 2006, 313, 204–207.PubMedCrossRefADSGoogle Scholar
  35. [35]
    Since our C bg is quite small (90 nm SiO2), contributions from the quantum capacitance can be ignored for carrier concentrations > 1011 cm-2.Google Scholar
  36. [36]
    Sui, Y.; Low, T.; Lundstrom, M.; Appenzeller, J. Signatures of disorder in the minimum conductivity of graphene. Nano Lett. 2011, 11, 1319–1322.PubMedCrossRefADSGoogle Scholar
  37. [37]
    Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2007, 4, 144–148.CrossRefGoogle Scholar
  38. [38]
    Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S. A self-consistent theory for graphene transport. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 18392–18397.PubMedCrossRefPubMedCentralADSGoogle Scholar
  39. [39]
    Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Charged-impurity scattering in graphene. Nat. Phys. 2008, 4, 377–381.CrossRefGoogle Scholar
  40. [40]
    Xu, G.; Torres, C. M.; Tang, J.; Bai, J.; Song, E. B.; Huang, Y.; Duan, X.; Zhang, Y.; Wang, K. L. Edge effect on resistance scaling rules in graphene nanostructures. Nano Lett. 2011, 11, 1082–1086.PubMedCrossRefADSGoogle Scholar
  41. [41]
    Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954–17961.CrossRefADSGoogle Scholar
  42. [42]
    Lee, E. J. H.; Balasubramanian, K.; Weitz, R. T.; Burghard, M.; Kern, K. Nature contact and edge effects in graphene devices. Nat. Nanotechnol. 2008, 3, 486–490.PubMedCrossRefADSGoogle Scholar
  43. [43]
    Cresti, A.; Roche, S. Range and correlation effects in edge disordered graphene nanoribbons. New J. Phys. 2009, 11, 095004.CrossRefADSGoogle Scholar
  44. [44]
    Yoon, Y.; Guo, J. Effect of edge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 2007, 91, 073103.CrossRefADSGoogle Scholar
  45. [45]
    In our quantitative comparison, a minor difference in temperature (295 K in this work and 240 K in Ref. [14]) has not been included.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Electrical and Computer Engineering DepartmentPurdue UniversityWest LafayetteUSA

Personalised recommendations