Skip to main content
Log in

Mn atomic layers under inert covers of graphene and hexagonal boron nitride prepared on Rh(111)

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Intercalation of metal atoms into the interface of graphene and its supporting substrate has become an intriguing topic for the sake of weakening the interface coupling and constructing metal atomic layers under inert covers. However, this novel behavior has rarely been reported on the analogous hexagonal boron nitride (h-BN) synthesized on metal substrates. Here, we describe a comparative study of Mn intercalation into the interfaces of graphene/Rh(111) and h-BN/Rh(111), by using atomically-resolved scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The intercalation was performed by annealing as-deposited Mn clusters, and the starting temperature of Mn intercalation into h-BN/Rh(111) was found to be ∼80 °C higher than that for graphene/Rh(111). Moreover, the intercalated islands of h-BN/Mn/Rh(111) usually possess more irregular shapes than those of graphene/Mn/Rh(111), as illustrated by temperature-dependent STM observations. All these experimental facts suggest a stronger interaction of Mn with h-BN/Rh(111) than that with graphene/Rh(111).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  PubMed  CAS  ADS  Google Scholar 

  2. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  CAS  ADS  Google Scholar 

  3. Liu, L.; Feng, Y. P.; Shen, Z. X. Structural and electronic properties of h-BN. Phys. Rev. B. 2003, 68, 104102.

    Article  ADS  Google Scholar 

  4. Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.

    Article  PubMed  CAS  ADS  Google Scholar 

  5. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    Article  PubMed  CAS  ADS  Google Scholar 

  6. Mayorov, A. S.; Gorbachev, R. V.; Morozov, S. V.; Britnell, L.; Jalil, R.; Ponomarenko, L. A.; Blake, P.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T.; et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 2011, 11, 2396–2399.

    Article  PubMed  CAS  ADS  Google Scholar 

  7. Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

    Article  PubMed  CAS  ADS  Google Scholar 

  8. Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z. Y.; et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139.

    Article  PubMed  CAS  ADS  Google Scholar 

  9. Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.

    Article  PubMed  CAS  ADS  Google Scholar 

  10. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  PubMed  CAS  ADS  Google Scholar 

  11. Liu, N.; Fu, L.; Dai, B. Y.; Yan, K.; Liu, X.; Zhao, R. Q.; Zhang, Y. F.; Liu, Z. F. Universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett. 2011, 11, 297–303.

    Article  PubMed  CAS  MATH  ADS  Google Scholar 

  12. Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L.-M.; et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 1702.

    Google Scholar 

  13. Zhang, Y. F.; Gao, T.; Gao, Y. B.; Xie, S. B.; Ji, Q. Q.; Yan, K.; Peng, H. L.; Liu, Z. F. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano 2011, 5, 4014–4022.

    Article  PubMed  CAS  Google Scholar 

  14. Reina, A.; Jia, X.T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  PubMed  CAS  ADS  Google Scholar 

  15. Merino, P.; Švec, M.; Pinardi, A. L.; Otero, G.; Martín-Gago, J. A. Strain-driven moiré superstructures of epitaxial graphene on transition metal surfaces. ACS Nano 2011, 5, 5627–5634.

    Article  PubMed  CAS  Google Scholar 

  16. N’Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T. Two-dimensional Ir cluster lattice on a graphene moiré on Ir(111). Phys. Rev. Lett. 2006, 97, 215501.

    Article  PubMed  ADS  Google Scholar 

  17. Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570.

    Article  PubMed  CAS  ADS  Google Scholar 

  18. Hattab, H.; N’Diaye, A. T.; Wall, D.; Klein, C.; Jnawali, G.; Coraux, J.; Busse, C.; Gastel, R. V.; Poelsema, B.; Michely, T.; et al. Interplay of wrinkles, strain, and lattice parameter in graphene on iridium. Nano Lett. 2012, 12, 678–682.

    Article  PubMed  CAS  ADS  Google Scholar 

  19. Sutter, P. W.; Flege, J.-I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

    Article  PubMed  CAS  ADS  Google Scholar 

  20. Pan, Y.; Zhang, H. G.; Shi, D. X.; Sun, J. T.; Du, S. X.; Liu, F.; Gao, H.-J. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 2009, 21, 2777–2780.

    Article  CAS  Google Scholar 

  21. Kwon, S.-Y.; Ciobanu, C. V.; Petrova, V.; Shenoy, V. B.; Bareño, J.; Gambin, V.; Petrov, I.; Kodambaka, S. Growth of semiconducting graphene on palladium. Nano Lett. 2009, 9, 3985–3990.

    Article  PubMed  CAS  ADS  Google Scholar 

  22. Moritz, W.; Wang, B.; Bocquet, M.-L.; Brugger, T.; Greber, T.; Wintterlin, J.; Günther, S. Structure determination of the coincidence phase of graphene on Ru(0001). Phys. Rev. Lett. 2010, 104, 136102.

    Article  PubMed  CAS  ADS  Google Scholar 

  23. Wang, B.; Caffio, M.; Bromley, C.; Früchtl, H.; Schaub, R.; Coupling epitaxy, chemical bonding, and work function at the local scale in transition metal-supported graphene. ACS Nano 2010, 4, 5773–5782.

    Article  PubMed  CAS  Google Scholar 

  24. Borca, B.; Barja, S.; Garnica, M.; Sánchez-Portal, D.; Silkin, V. M.; Chulkov, E. V.; Hermanns, C. F.; Hinarejos, J. J.; Vázquez de Parga, A. L.; Arnau, A.; et al.. Potential energy landscape for hot electrons in periodically nanostructured graphene. Phys. Rev. Lett. 2010, 105, 036804.

    Article  PubMed  CAS  ADS  Google Scholar 

  25. Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217–220.

    Article  PubMed  CAS  ADS  Google Scholar 

  26. Laskowski, R.; Blaha, P.; Gallauner, T.; Schwarz, K. Single-layer model of the hexagonal boron nitride nanomesh on the Rh(111) surface. Phys. Rev. Lett. 2007, 98, 106802.

    Article  PubMed  ADS  Google Scholar 

  27. Berner, S.; Corso, M.; Widmer, R.; Groening, O.; Laskowski, R.; Blaha, P.; Schwarz, K.; Goriachko, A.; Over, H.; Gsell, S.; et al. Boron nitride nanomesh: Functionality from a corrugated monolayer. Angew. Chem. Int. Ed. 2007, 46, 5115–5119.

    Article  CAS  Google Scholar 

  28. Vinogradov, N. A.; Zakharov, A. A.; Ng, M. L.; Mikkelsen, A.; Lundgren, E.; Mårtensson, N.; Preobrajenski, A. B. One-dimensional corrugation of the h-BN monolayer on Fe(110). Langmuir 2012, 28, 1775–1781.

    Article  PubMed  CAS  Google Scholar 

  29. Dedkov, Y. S.; Fonin, M.; Rüdiger, U.; Laubschat, C. Rashba effect in the graphene/Ni(111) system. Phys. Rev. Lett. 2008, 100, 107602.

    Article  PubMed  ADS  Google Scholar 

  30. Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A. M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601.

    Article  PubMed  CAS  ADS  Google Scholar 

  31. Zhang, H.; Fu, Q.; Cui, Y.; Tan, D. L.; Bao, X. H. Growth mechanism of graphene on Ru(0001) and O2 adsorption on the graphene/Ru(0001) surface. J. Phys. Chem. C 2009, 113, 8296–8301.

    Article  CAS  Google Scholar 

  32. Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175–8179.

    Article  PubMed  CAS  Google Scholar 

  33. Mu, R. T.; Fu, Q.; Jin, L.; Yu, L.; Fang, G. Z.; Tan, D. L.; Bao, X. H. Visualizing chemical reactions confined under graphene. Angew. Chem. Int. Ed. 2012, 51, 4856–4859.

    Article  CAS  Google Scholar 

  34. Mao, J. H.; Huang, L.; Pan, Y.; Gao, M.; He, J. F.; Zhou, H. T.; Guo, H. M.; Tian, Y.; Zou, Q.; Zhang, L. Z.; et al. Silicon layer intercalation of centimeter-scale, epitaxially-grown monolayer graphene on Ru(0001). Appl. Phys. Lett. 2012, 100, 093101

    Article  ADS  Google Scholar 

  35. Dedkov, Y. S.; Fonin, M.; Rüdiger, U.; Laubschat, C. Graphene-protected iron layer on Ni(111). Appl. Phys. Lett. 2008, 93, 022509.

    Article  ADS  Google Scholar 

  36. Sicot, M.; Leicht, P.; Zusan, A.; Bouvron, S.; Zander, O.; Weser, M.; Dedkov, Y. S.; Horn, K.; Fonin, M. Size-selected epitaxial nanoislands underneath graphene moiré on Rh(111). ACS Nano 2012, 6, 151–158.

    Article  PubMed  CAS  Google Scholar 

  37. Huang, L.; Pan, Y.; Pan, L. D.; Gao, M.; Xu, W. Y.; Que, Y. D.; Zhou, H. T.; Wang, Y. L.; Du, S. X.; Gao, H.-J. Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru(0001) surfaces. Appl. Phys. Lett. 2011, 99, 163107.

    Article  ADS  Google Scholar 

  38. Cui, Y.; Gao, J. F.; Jin, L.; Zhao, J. J.; Tan, D. L.; Fu, Q.; Bao, X. H. An exchange intercalation mechanism for the formation of a two-dimensional Si structure underneath graphene. Nano Res. 2012, 5, 352–360.

    Article  CAS  Google Scholar 

  39. Mao, J. H.; Huang, L.; Pan, Y.; Gao, M.; He, J. F.; Zhou, H. T.; Guo, H. M.; Tian, Y.; Zou, Q.; Zhang, L. Z.; et al. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001). Appl. Phys. Lett. 2012, 100, 093101.

    Article  ADS  Google Scholar 

  40. Meng, L.; Wu, R. T.; Zhou, H. T.; Li, G.; Zhang, Y.; Li, L. F.; Wang, Y. L.; Gao, H.-J. Silicon intercalation at the interface of graphene and Ir(111). Appl. Phys. Lett. 2012, 100, 083101.

    Article  ADS  Google Scholar 

  41. Lizzit, S.; Larciprete, R.; Lacovig, P.; Dalmiglio, M.; Orlando, F.; Baraldi, A.; Gammelgaard, L.; Barreto, L.; Bianchi, M.; Perkins, E.; et al. Transfer-free electrical insulation of epitaxial graphene from its metal substrate. Nano Lett. 2012, 12, 4503–4507.

    Article  PubMed  CAS  ADS  Google Scholar 

  42. Preobrajenski, A. B.; Ng, M. L.; Vinogradov, N. A.; Vinogradov, A. S.; Lundgren, E.; Mikkelsen, A.; Mårtensson, N. Impact of oxygen coadsorption on intercalation of cobalt under the h-BN nanomesh. Nano Lett. 2009, 9, 2780–2787.

    Article  PubMed  CAS  ADS  Google Scholar 

  43. Goriachko, A.; He, Y. B.; Over, H. Complex growth of NanoAu on BN nanomeshes supported by Ru(0001). J. Phys. Chem. C 2008, 112, 8147–8152.

    Article  CAS  Google Scholar 

  44. Jin, L.; Fu, Q.; Mu, R. T.; Tan, D. L.; Bao, X. H. Pb intercalation underneath a graphene layer on Ru(0001) and its effect on graphene oxidation. Phys. Chem. Chem. Phys. 2011, 13, 16655–16660.

    Article  PubMed  CAS  Google Scholar 

  45. Lahiri, J.; Batzill, M. Graphene destruction by metal-carbide formation: An approach for patterning of metal-supported graphene. Appl. Phys. Lett. 2010, 97, 023102.

    Article  ADS  Google Scholar 

  46. Gao, T.; Gao, Y. B.; Chang, C. Z.; Chen, Y. B.; Liu, M. X.; Xie, S. B.; He, K.; Ma, X. C.; Zhang, Y. F.; Liu, Z. F. Atomic-scale morphology and electronic structure of manganese atomic layers underneath epitaxial graphene on SiC(0001). ACS Nano 2012, 6, 6562–6568.

    Article  PubMed  CAS  Google Scholar 

  47. Boukhvalov, D. W.; Katsnelson, M. I. Destruction of graphene by metal adatoms. Appl. Phys. Lett. 2009, 95, 023109.

    Article  Google Scholar 

  48. Reuter, K.; Scheffler, M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 2001, 65, 035406.

    Article  ADS  Google Scholar 

  49. Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

    Article  PubMed  CAS  ADS  Google Scholar 

  50. Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfeng Zhang or Zhongfan Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhang, Y., Ma, D. et al. Mn atomic layers under inert covers of graphene and hexagonal boron nitride prepared on Rh(111). Nano Res. 6, 887–896 (2013). https://doi.org/10.1007/s12274-013-0365-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0365-z

Keywords

Navigation