Nano Research

, Volume 6, Issue 9, pp 627–634 | Cite as

Enhanced and tunable fluorescent quantum dots within a single crystal of protein

  • Hui Wei
  • Stephen House
  • Jiangjiexing Wu
  • Jiong Zhang
  • Zidong Wang
  • Ying He
  • Elizabeth J. Gao
  • Yigui Gao
  • Howard Robinson
  • Wei Li
  • Jianmin Zuo
  • Ian M. Robertson
  • Yi Lu
Research Article


The design and synthesis of bio-nano hybrid materials can not only provide new materials with novel properties, but also advance our fundamental understanding of interactions between biomolecules and their abiotic counterparts. Here, we report a new approach to achieving such a goal by growing CdS quantum dots (QDs) within single crystals of lysozyme protein. This bio-nano hybrid emitted much stronger red fluorescence than its counterpart without the crystal, and such fluorescence properties could be either enhanced or suppressed by the addition of Ag(I) or Hg(II), respectively. The three-dimensional incorporation of CdS QDs within the lysozyme crystals was revealed by scanning transmission electron microscopy with electron tomography. More importantly, since our approach did not disrupt the crystalline nature of the lysozyme crystals, the metal and protein interactions were able to be studied by X-ray crystallography, thus providing insight into the role of Cd(II) in the CdS QDs formation.


functional bio-nanomaterials quantum dots protein single crystals X-ray crystallography tomography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_348_MOESM1_ESM.pdf (776 kb)
Supplementary material, approximately 772 KB.


  1. [1]
    Niemeyer, C. M.; Mirkin, C. A. Nanobiotechnology II: More concepts and applications; WILEY-VCH: Weinheim, 2004.CrossRefGoogle Scholar
  2. [2]
    Xue, X. J.; Wang, F.; Liu, X. G. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc. 2008, 130, 3244–3245.CrossRefGoogle Scholar
  3. [3]
    Suzuki, M.; Abe, M.; Ueno, T.; Abe, S.; Goto, T.; Toda, Y.; Akita, T.; Yamadae, Y.; Watanabe, Y. Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in Apo-ferritin. Chem. Commun. 2009, 4871–4873.Google Scholar
  4. [4]
    Ruiz-Hitzky, E.; Darder, M.; Aranda, P.; Ariga, K. Advances in biomimetic and nanostructured biohybrid materials. Adv. Mater. 2010, 22, 323–336.CrossRefGoogle Scholar
  5. [5]
    Wang, F.; Tan, W. B.; Zhang, Y.; Fan, X. P.; Wang, M. Q. Luminescent nanomaterials for biological labelling. Nanotechnology 2006, 17, R1–R13.CrossRefGoogle Scholar
  6. [6]
    Yan, J. L.; Estevez, M. C.; Smith, J. E.; Wang, K. M.; He, X. X.; Wang, L.; Tan, W. H. Dye-doped nanoparticles for bioanalysis. Nano Today 2007, 2, 44–50.CrossRefGoogle Scholar
  7. [7]
    Lu, Y.; Liu, J. W. Smart nanomaterials inspired by biology: Dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc. Chem. Res. 2007, 40, 315–323.CrossRefGoogle Scholar
  8. [8]
    Wang, Z. D.; Lu, Y. Functional DNA directed assembly of nanomaterials for biosensing. J. Mater. Chem. 2009, 19, 1788–1798.CrossRefGoogle Scholar
  9. [9]
    Lee, J. H.; Yigit, M. V.; Mazumdar, D.; Lu, Y. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv. Drug Deliv. Rev. 2010, 62, 592–605.CrossRefGoogle Scholar
  10. [10]
    Xing, H.; Wong, N. Y.; Xiang, Y.; Lu, Y. DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr. Opin. Chem. Biol. 2012, 16, 429–435.CrossRefGoogle Scholar
  11. [11]
    Pal, S.; Sharma, J.; Yan, H.; Liu, Y. Stable silver nanoparticle-DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters. Chem. Commun. 2009, 6059–6061.Google Scholar
  12. [12]
    Choi, S.; Dickson, R. M.; Yu, J. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 2012, 41, 1867–1891.CrossRefGoogle Scholar
  13. [13]
    Dickerson, M. B.; Sandhage, K. H.; Naik, R. R. Protein- and peptide-directed syntheses of inorganic materials. Chem. Rev. 2008, 108, 4935–4978.CrossRefGoogle Scholar
  14. [14]
    Sanders, L. K.; Xian, W. J.; Guaqueta, C.; Strohman, M. J.; Vrasich, C. R.; Luijten, E.; Wong, G. C. L. Control of electrostatic interactions between F-actin and genetically modified lysozyme in aqueous media. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 15994–15999.CrossRefGoogle Scholar
  15. [15]
    Zhang, M. G.; Smith, A.; Gorski, W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem. 2004, 76, 5045–5050.CrossRefGoogle Scholar
  16. [16]
    Lee, Y. J.; Yi, H.; Kim, W. J.; Kang, K.; Yun, D. S.; Strano, M. S.; Ceder, G.; Belcher, A. M. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 2009, 324, 1051–1055.Google Scholar
  17. [17]
    Park, T. J.; Lee, S. Y.; Heo, N. S.; Seo, T. S. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angew. Chem. Int. Ed. 2010, 49, 7019–7024.CrossRefGoogle Scholar
  18. [18]
    Sturzenbaum, S. R.; Hockner, M.; Panneerselvam, A.; Levitt, J.; Bouillard, J. S.; Taniguchi, S.; Dailey, L. A.; Khanbeigi, R. A.; Rosca, E. V.; Thanou, M. et al. Biosynthesis of luminescent quantum dots in an earthworm. Nat. Nanotechnol. 2013, 8, 57–60.CrossRefGoogle Scholar
  19. [19]
    Bao, H. F.; Lu, Z. S.; Cui, X. Q.; Qiao, Y.; Guo, J.; Anderson, J. M.; Li, C. M. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater. 2010, 6, 3534–3541.CrossRefGoogle Scholar
  20. [20]
    Liu, J. W.; Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 2003, 125, 6642–6643.CrossRefGoogle Scholar
  21. [21]
    Wei, H.; Wang, Z. D.; Yang, L. M.; Tian, S. L.; Hou, C. J.; Lu, Y. Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg2+ sensor. Analyst 2010, 135, 1406–1410.CrossRefGoogle Scholar
  22. [22]
    Xing, H.; Wang, Z. D.; Xu, Z. D.; Wong, N. Y.; Xiang, Y.; Liu, G. L. G.; Lu, Y. DNA-directed assembly of asymmetric nanoclusters using Janus nanoparticles. ACS Nano 2012, 6, 802–809.CrossRefGoogle Scholar
  23. [23]
    Li, L. L.; Zhang, R. B.; Yin, L. L.; Zheng, K. Z.; Qin, W. P.; Selvin, P. R.; Lu, Y. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew. Chem. Int. Ed. 2012, 51, 6121–6125.CrossRefGoogle Scholar
  24. [24]
    Li, L. L.; Yin, Q.; Cheng, J. J.; Lu, Y. Polyvalent mesoporous silica nanoparticle-aptamer bioconjugates target breast cancer cells. Adv. Healthcare Mater. 2012, 1, 567–572.CrossRefGoogle Scholar
  25. [25]
    Wang, Z. D.; Tang, L. H.; Tan, L. H.; Li, J. H.; Lu, Y. Discovery of the DNA “genetic code” for abiological gold nanoparticle morphologies. Angew. Chem. Int. Ed. 2012, 51, 9078–9082.CrossRefGoogle Scholar
  26. [26]
    Wu, P. W.; Hwang, K.; Lan, T.; Lu, Y. A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J. Am. Chem. Soc. 2013, 135, 5254–5257.CrossRefGoogle Scholar
  27. [27]
    Li, L. L.; Wu, P. W.; Hwang, K.; Lu, Y. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc. 2013, 135, 2411–2414.CrossRefGoogle Scholar
  28. [28]
    Ueno, T.; Abe, S.; Yokoi, N.; Watanabe, Y. Coordination design of artificial metalloproteins utilizing protein vacant space. Coord. Chem. Rev. 2007, 251, 2717–2731.CrossRefGoogle Scholar
  29. [29]
    Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.CrossRefGoogle Scholar
  30. [30]
    Medalsy, I.; Dgany, O.; Sowwan, M.; Cohen, H.; Yukashevska, A.; Wolf, S. G.; Wolf, A.; Koster, A.; Almog, O.; Marton, I. et al. SP1 protein-based nanostructures and arrays. Nano Lett. 2008, 8, 473–477.CrossRefGoogle Scholar
  31. [31]
    Dani, R. K.; Kang, M.; Kalita, M.; Smith, P. E.; Bossmann, S. H.; Chikan, V. MspA porin-gold nanoparticle assemblies: Enhanced binding through a controlled cysteine mutation. Nano Lett. 2008, 8, 1229–1236.CrossRefGoogle Scholar
  32. [32]
    Guo, C. L.; Irudayaraj, J. Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Anal. Chem. 2011, 83, 2883–2889.CrossRefGoogle Scholar
  33. [33]
    Chaudhari, K.; Xavier, P. L.; Pradeep, T. Understanding the evolution of luminescent gold quantum clusters in protein templates. ACS Nano 2011, 5, 8816–8827.CrossRefGoogle Scholar
  34. [34]
    Ge, J.; Lei, J. D.; Zare, R. N. Protein-inorganic hybrid nanoflowers. Nat. Nanotechnol. 2012, 7, 428–432.CrossRefGoogle Scholar
  35. [35]
    Wang, Y. C.; Wang, Y.; Zhou, F. B.; Kim, P.; Xia, Y. N. Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small 2012, 8, 3769–3773.CrossRefGoogle Scholar
  36. [36]
    Colombo, M.; Mazzucchelli, S.; Collico, V.; Avvakumova, S.; Pandolfi, L.; Corsi, F.; Porta, F.; Prosperi, D. Protein-assisted one-pot synthesis and biofunctionalization of spherical gold nanoparticles for selective targeting of cancer cells. Angew. Chem. Int. Ed. 2012, 51, 9272–9275.CrossRefGoogle Scholar
  37. [37]
    Chen, T. H.; Tseng, W. L. (Lysozyme type VI)-stabilized Au8 clusters: Synthesis mechanism and application for sensing of glutathione in a single drop of blood. Small 2012, 8, 1912–1919.CrossRefGoogle Scholar
  38. [38]
    Meldrum, F. C.; Wade, V. J.; Nimmo, D. L.; Heywood, B. R.; Mann, S. Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 1991, 349, 684–687.CrossRefGoogle Scholar
  39. [39]
    Uchida, M.; Klem, M. T.; Allen, M.; Suci, P.; Flenniken, M.; Gillitzer, E.; Varpness, Z.; Liepold, L. O.; Young, M.; Douglas, T. Biological containers: Protein cages as multifunctional nanoplatforms. Adv. Mater. 2007, 19, 1025–1042.CrossRefGoogle Scholar
  40. [40]
    Butts, C. A.; Swift, J.; Kang, S. G.; Di Costanzo, L.; Christianson, D. W.; Saven, J. G.; Dmochowski, I. J. Directing noble metal ion chemistry within a designed ferritin protein. Biochemistry 2008, 47, 12729–12739.CrossRefGoogle Scholar
  41. [41]
    Margolin, A. L.; Navia, M. A. Protein crystals as novel catalytic materials. Angew. Chem. Int. Ed. 2001, 40, 2204–2222.CrossRefGoogle Scholar
  42. [42]
    Sanghamitraa, N. J. M.; Ueno, T. Expanding coordination chemistry from protein to protein assembly. Chem. Commun. 2013, 49, 4114–4126.CrossRefGoogle Scholar
  43. [43]
    Falkner, J. C.; Turner, M. E.; Bosworth, J. K.; Trentler, T. J.; Johnson, J. E.; Lin, T. W.; Colvin, V. L. Virus crystals as nanocomposite scaffolds. J. Am. Chem. Soc. 2005, 127, 5274–5275.CrossRefGoogle Scholar
  44. [44]
    Guli, M.; Lambert, E. M.; Li, M.; Mann, S. Template-directed synthesis of nanoplasmonic arrays by intracrystalline metalization of cross-linked lysozyme crystals. Angew. Chem. Int. Ed. 2010, 49, 520–523.CrossRefGoogle Scholar
  45. [45]
    Ueno, T.; Abe, S.; Koshiyama, T.; Ohki, T.; Hikage, T.; Watanabe, Y. Elucidation of metal-ion accumulation induced by hydrogen bonds on protein surfaces by using porous lysozyme crystals containing Rh-III ions as the model surfaces. Chem. Eur. J. 2010, 16, 2730–2740.CrossRefGoogle Scholar
  46. [46]
    Wei, H.; Wang, Z. D.; Zhang, J.; House, S.; Gao, Y. G.; Yang, L. M.; Robinson, H.; Tan, L. H.; Xing, H.; Hou, C. J. et al. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nat. Nanotechnol. 2011, 6, 93–97.CrossRefGoogle Scholar
  47. [47]
    Vekilov, P. G. Gold nanoparticles grown in a crystal. Nat. Nanotechnol. 2011, 6, 82–83.CrossRefGoogle Scholar
  48. [48]
    Liu, C. L.; Wu, H. T.; Hsiao, Y. H.; Lai, C. W.; Shih, C. W.; Peng, Y. K.; Tang, K. C.; Chang, H. W.; Chien, Y. C.; Hsiao, J. K. et al. Insulin-directed synthesis of fluorescent gold nanoclusters: Preservation of insulin bioactivity and versatility in cell imaging. Angew. Chem. Int. Ed. 2011, 50, 7056–7060.CrossRefGoogle Scholar
  49. [49]
    Wei, H.; Lu, Y. Catalysis of gold nanoparticles within lysozyme single crystals. Chem. Asian J. 2012, 7, 680–683.CrossRefGoogle Scholar
  50. [50]
    Abe, S.; Tsujimoto, M.; Yoneda, K.; Ohba, M.; Hikage, T.; Takano, M.; Kitagawa, S.; Ueno, T. Porous protein crystals as reaction vessels for controlling magnetic properties of nanoparticles. Small 2012, 8, 1314–1319.CrossRefGoogle Scholar
  51. [51]
    Steigerwald, M. L.; Brus, L. E. Semiconductor crystallites: A class of large molecules. Acc. Chem. Res. 1990, 23, 183–188.CrossRefGoogle Scholar
  52. [52]
    Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.CrossRefGoogle Scholar
  53. [53]
    Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.CrossRefGoogle Scholar
  54. [54]
    Bhattacharya, P.; Ghosh, S.; Stiff-Roberts, A. D. Quantum dot opto-electronic devices. Ann. Rev. Mater. Res. 2004, 34, 1–40.CrossRefGoogle Scholar
  55. [55]
    Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.CrossRefGoogle Scholar
  56. [56]
    Sargent, E. H. Colloidal quantum dot solar cells. Nat. Photonics 2012, 6, 133–135.CrossRefGoogle Scholar
  57. [57]
    Regulacio, M. D.; Han, M. Y. Composition-tunable alloyed semiconductor nanocrystals. Acc. Chem. Res. 2010, 43, 621–630.CrossRefGoogle Scholar
  58. [58]
    Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.CrossRefGoogle Scholar
  59. [59]
    Li, Z.; Qin, H. Y.; Guzun, D.; Benamara, M.; Salamo, G.; Peng, X. G. Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties. Nano Res. 2012, 5, 337–351.CrossRefGoogle Scholar
  60. [60]
    Li, F.; Zhang, Z. P.; Peng, J.; Cui, Z. Q.; Pang, D. W.; Li, K.; Wei, H. P.; Zhou, Y. F.; Wen, J. K.; Zhang, X. E. Imaging viral behavior in mammalian cells with self-assembled capsid-quantum-dot hybrid particles. Small 2009, 5, 718–726.CrossRefGoogle Scholar
  61. [61]
    Hu, M.; Yan, J.; He, Y.; Lu, H. T.; Weng, L. X.; Song, S. P.; Fan, C. H.; Wang, L. H. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano 2010, 4, 488–494.CrossRefGoogle Scholar
  62. [62]
    Xiao, Q.; Huang, S.; Qi, Z. D.; Zhou, B.; He, Z. K.; Liu, Y. Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. BBA-Proteins Proteomics 2008, 1784, 1020–1027.CrossRefGoogle Scholar
  63. [63]
    Chen, L. D.; Liu, J.; Yu, X. F.; He, M.; Pei, X. F.; Tang, Z. Y.; Wang, Q. Q.; Pang, D. W.; Li, Y. The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials 2008, 29, 4170–4176.CrossRefGoogle Scholar
  64. [64]
    Qu, Y.; Li, W.; Zhou, Y. L.; Liu, X. F.; Zhang, L. L.; Wang, L. M.; Li, Y. F.; Iida, A.; Tang, Z. Y.; Zhao, Y. L. et al. Full assessment of fate and physiological behavior of quantum dots utilizing caenorhabditis elegans as a model organism. Nano Lett. 2011, 11, 3174–3183.CrossRefGoogle Scholar
  65. [65]
    Kang, Z. H.; Liu, Y.; Tsang, C. H. A.; Ma, D. D. D.; Fan, X.; Wong, N. B.; Lee, S. T. Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv. Mater. 2009, 21, 661–664.CrossRefGoogle Scholar
  66. [66]
    Liu, J. W.; Lee, J. H.; Lu, Y. Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal. Chem. 2007, 79, 4120–4125.CrossRefGoogle Scholar
  67. [67]
    Resch, U.; Eychmuller, A.; Haase, M.; Weller, H. Absorption and fluorescence behavior of redispersible Cds colloids in various organic-solvents. Langmuir 1992, 8, 2215–2218.CrossRefGoogle Scholar
  68. [68]
    Dameron, C. T.; Reese, R. N.; Mehra, R. K.; Kortan, A. R.; Carroll, P. J.; Steigerwald, M. L.; Brus, L. E.; Winge, D. R. Biosynthesis of cadmium-sulfide quantum semiconductor crystallites. Nature 1989, 338, 596–597.CrossRefGoogle Scholar
  69. [69]
    Wong, K. K. W.; Mann, S. Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites. Adv. Mater. 1996, 8, 928–932.CrossRefGoogle Scholar
  70. [70]
    Naito, M.; Iwahori, K.; Miura, A.; Yamane, M.; Yamashita, I. Circularly polarized luminescent CdS quantum dots prepared in a protein nanocage. Angew. Chem. Int. Ed. 2010, 49, 7006–7009.CrossRefGoogle Scholar
  71. [71]
    Zheng, Y. G.; Yang, Z. C.; Ying, J. Y. Aqueous synthesis of glutathione-capped ZnSe and Zn1−xCdxSe alloyed quantum dots. Adv. Mater. 2007, 19, 1475–1479.CrossRefGoogle Scholar
  72. [72]
    Arslan, I.; Yates, T. J. V.; Browning, N. D.; Midgley, P. A. Embedded nanostructures revealed in three dimensions. Science 2005, 309, 2195–2198.CrossRefGoogle Scholar
  73. [73]
    Li, H. Y.; Xin, H. L.; Muller, D. A.; Estroff, L. A. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 2009, 326, 1244–1247.CrossRefGoogle Scholar
  74. [74]
    Chen, J. L.; Zhu, C. Q. Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Anal. Chim. Acta 2005, 546, 147–153.CrossRefGoogle Scholar
  75. [75]
    Han, B. Y.; Yuan, J. P.; Wang, E. K. Sensitive and selective sensor for biothiols in the cell based on the recovered fluorescence of the CdTe quantum dots-Hg(II) system. Anal. Chem. 2009, 81, 5569–5573.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hui Wei
    • 1
  • Stephen House
    • 2
  • Jiangjiexing Wu
    • 1
    • 3
  • Jiong Zhang
    • 2
  • Zidong Wang
    • 2
  • Ying He
    • 2
  • Elizabeth J. Gao
    • 1
  • Yigui Gao
    • 4
  • Howard Robinson
    • 5
  • Wei Li
    • 3
  • Jianmin Zuo
    • 2
  • Ian M. Robertson
    • 2
  • Yi Lu
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Key Laboratory for Green Chemical Technology MOETianjin UniversityTianjinChina
  4. 4.George L. Clark X-Ray Facility and 3M Materials LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  5. 5.Department of BiologyBrookhaven National LaboratoryUptonUSA

Personalised recommendations