Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air

Abstract

Patterning ultrathin MoS2 layers with regular edges or controllable shapes is appealing since the properties of MoS2 sheets are sensitive to the edge structures. In this work, we have introduced a simple, effective and well-controlled technique to etch layered MoS2 sheets with well-oriented equilateral triangular pits by simply heating the samples in air. The anisotropic oxidative etching is greatly affected by the surrounding temperature and the number of MoS2 layers, whereby the pit sizes increase with the increase of surrounding temperature and the number of MoS2 layers. First-principles computations have been performed to explain the formation mechanism of the triangular pits. This technique offers an alternative avenue to engineering the structure of MoS2 sheets.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  2. [2]

    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  CAS  Google Scholar 

  3. [3]

    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  Google Scholar 

  4. [4]

    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  5. [5]

    Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  Google Scholar 

  6. [6]

    Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.

    Article  CAS  Google Scholar 

  7. [7]

    Guo, Y.; Zhang, Y. F.; Bao, X. Y.; Han, T. Z.; Tang, Z.; Zhang, L. X.; Zhu, W. G.; Wang, E. G.; Niu, Q.; Qiu, Z. Q. et al. Superconductivity modulated by quantum size effects. Science 2004, 306, 1915–1917.

    Article  CAS  Google Scholar 

  8. [8]

    Ma, L.Y.; Tang, L.; Guan, Z. L.; He, K.; An, K.; Ma, X. C.; Jia, J. F.; Xue, Q. K. Quantum size effect on adatom surface diffusion. Phys. Rev. Lett. 2006, 97, 266102.

    Article  Google Scholar 

  9. [9]

    Ma, X. C.; Jiang, P.; Qi, Y.; Jia, J. F.; Yang, Y.; Duan, W. H.; Li, W. X.; Bao, X. H.; Zhang, S. B.; Xue, Q. K. Experimental observation of quantum oscillation of surface chemical reactivities. Proc. Natl Acad. Sci. U.S.A. 2007, 104, 9204–9208.

    Article  CAS  Google Scholar 

  10. [10]

    Ellis, J. K.; Lucero, M. J.; Scuseria, G. E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 2011, 99, 261908.

    Article  Google Scholar 

  11. [11]

    Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  CAS  Google Scholar 

  12. [12]

    Lee, C. G.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  CAS  Google Scholar 

  13. [13]

    Wang, Y. L.; Cong, C. X.; Qiu, C. Y.; Yu, T. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small, in press, DOI: 10.1002/smll.201202876.

  14. [14]

    Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966–971.

    Article  CAS  Google Scholar 

  15. [15]

    Liu, L.; Ryu, S.; Tomasik, M. R.; Stolyarova, E.; Jung, N.; Hybertsen, M. S.; Steigerwald, M. L.; Brus, L. E.; Flynn, G. W. Graphene oxidation: Thickness-dependent etching and strong chemical doping. Nano Lett. 2008, 8, 1965–1970.

    Article  CAS  Google Scholar 

  16. [16]

    Helveg, S.; Lauritsen, J. V.; Lægsgaard, E.; Stensgaard, I.; Nørskov, J. K.; Clausen, B. S. Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 2000, 84, 951–954.

    Article  CAS  Google Scholar 

  17. [17]

    Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 2008, 130, 16739–16744.

    Article  CAS  Google Scholar 

  18. [18]

    Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Article  CAS  Google Scholar 

  19. [19]

    Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

    Article  CAS  Google Scholar 

  20. [20]

    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. U.S.A. 2005, 102, 10451–10453.

    Article  CAS  Google Scholar 

  21. [21]

    Cong, C. X.; Yu, T.; Wang, H. M.; Zheng, K. H.; Gao, P. Q.; Chen, X. D.; Zhang, Q. Self-limited oxidation: A route to form graphene layers from graphite by one-step heating. Small 2010, 6, 2837–2841.

    Article  CAS  Google Scholar 

  22. [22]

    Zhou, H. Q.; Qiu, C. Y.; Liu, Z.; Yang, H. C.; Hu, L. J.; Liu, J.; Yang, H. F.; Gu, C. Z.; Sun, L. F. Thickness-dependent morphologies of gold on n-layer graphenes. J. Am. Chem. Soc. 2010, 132, 944–946.

    Article  CAS  Google Scholar 

  23. [23]

    Castellanos-Gomez, A.; Agraït, N.; Rubio-Bollinger, G. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 2010, 96, 213116.

    Article  Google Scholar 

  24. [24]

    Benameur, M. M.; Radisavljevic, B.; Héron, J. S.; Sahoo, S.; Berger, H.; Kis, A. Visibility of dichalcogenide nanolayers. Nanotechnology 2011, 22, 125706.

    Article  CAS  Google Scholar 

  25. [25]

    Nemes-Incze, P.; Magda, G.; Kamarás, K.; Biró, L. P. Crystallographically selective nanopatterning of graphene on SiO2. Nano Res. 2010, 3, 110–116.

    Article  CAS  Google Scholar 

  26. [26]

    Ajayan, P. M.; Yakobson, B. I. Materials science: Oxygen breaks into carbon world. Nature 2006, 7095, 818–819.

    Article  Google Scholar 

  27. [27]

    Yang, R.; Zhang, L. C.; Wang, Y.; Shi, Z. W.; Shi, D. X.; Gao, H. J.; Wang, E. G.; Zhang, G. Y. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014–4019.

    Article  CAS  Google Scholar 

  28. [28]

    Shi, Z. W.; Yang, R.; Zhang, L. C.; Wang, Y.; Liu, D. H.; Shi, D. X.; Wang, E. G.; Zhang, G. Y. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater. 2011, 23, 3061–3065.

    Article  CAS  Google Scholar 

  29. [29]

    Ci, L. J.; Song, L.; Jariwala, D.; Elĺas, A. L.; Gao, W.; Terrones, M.; Ajayan, P. M. Graphene shape control by multistage cutting and transfer. Adv. Mater. 2009, 21, 4487–4491.

    Article  CAS  Google Scholar 

  30. [30]

    Gao, L. B.; Ren, W. C.; Liu, B. L.; Wu, Z. S.; Jiang, C. B.; Cheng, H. M. Crystallographic tailoring of graphene by nonmetal SiOx nanoparticles. J. Am. Chem. Soc. 2009, 131, 13934–13936.

    Article  CAS  Google Scholar 

  31. [31]

    Kim, Y.; Huang, J. L.; Lieber, C. M. Characterization of nanometer scale wear and oxidation of transition metal dichalcogenide lubricants by atomic force microscopy. Appl. Phys. Lett. 1991, 59, 3404.

    Article  CAS  Google Scholar 

  32. [32]

    Wu, S. F.; Huang, C. M.; Aivazian, G.; Ross, J. S.; Cobden, D. H.; Xu, X. D. Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 2013, 7, 2768–2772.

    Article  CAS  Google Scholar 

  33. [33]

    van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    Article  Google Scholar 

  34. [34]

    Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, in press, DOI: 10.1038/NMAT3673.

    Google Scholar 

  35. [35]

    Schweiger, H.; Raybaud, P.; Kresse, G.; Toulhoat, H. Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: A theoretical study. J. Catal. 2002, 207, 76–87.

    Article  CAS  Google Scholar 

  36. [36]

    Huang, Y.; Wu, J.; Xu, X. F.; Ho, Y. D.; Ni, G. X.; Zou, Q.; Koon, G. K. W.; Zhao, W. J.; Shen, C. M.; Castro Neto, A. H. et al. An innovative way of etching MoS2: Characterization and mechanism investigation. Nano Res. 2013, 6, 200–207.

    Article  CAS  Google Scholar 

  37. [37]

    Liu, H.; Gu, J. J.; Ye, P. D. MoS2 nanoribbon transistors: Transition from depletion mode to enhancement mode by channel-width trimming. IEEE Electr. Device L. 2012, 33, 1273–1275.

    Article  CAS  Google Scholar 

  38. [38]

    Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.; Steele, G. A. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187–3192.

    Article  CAS  Google Scholar 

  39. [39]

    Ross, S.; Sussman, A. Surface oxidation of molybdenum disulfide. J. Phys. Chem. 1955, 59, 889–892.

    Article  CAS  Google Scholar 

  40. [40]

    Lince, J. R.; Frantz, P. P. Anisotropic oxidation of MoS2 crystallites studied by angle-resolved X-ray photoelectron spectroscopy. Tribol. Lett. 2000, 9, 211–218.

    Article  CAS  Google Scholar 

  41. [41]

    Sekerka, R. F. Equilibrium and growth shapes of crystals: How do they differ and why should we care? Cryst. Res. Technol. 2005, 40, 291–306.

    Article  CAS  Google Scholar 

  42. [42]

    Artyukhov, V. I.; Liu, Y.; Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 15136–15140.

    Article  CAS  Google Scholar 

  43. [43]

    Liu, Y.; Dobrinsky, A.; Yakobson, B. I. Graphene edge from armchair to zigzag: The origins of nanotube chirality? Phys. Rev. Lett. 2010, 105, 235502.

    Article  Google Scholar 

  44. [44]

    Liu, Y.; Bhowmick, S.; Yakobson, B. I. BN white graphene with “colorful” edges: The energies and morphology. Nano Lett. 2011, 11, 3113–3116.

    Article  CAS  Google Scholar 

  45. [45]

    Yang, R. T.; Wong, C. Kinetics and mechanism of oxidation of basal plane on graphite. J. Chem. Phys. 1981, 75, 4471–4476.

    Article  CAS  Google Scholar 

  46. [46]

    Chang, H.; Bard, A. J. Formation of monolayer pits of controlled nanometer size on highly oriented pyrolytic graphite by gasification reactions as studied by scanning tunneling microscopy. J. Am. Chem. Soc. 1990, 112, 4598–4599.

    Article  CAS  Google Scholar 

  47. [47]

    Hahn, J. R.; Kang, H.; Lee, S. M.; Lee, Y. H. Mechanistic study of defect-induced oxidation of graphite. J. Phys. Chem. B 1999, 103, 9944–9951.

    Article  CAS  Google Scholar 

  48. [48]

    Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

    Article  CAS  Google Scholar 

  49. [49]

    Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.

    Article  Google Scholar 

  50. [50]

    Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ting Yu or Boris I. Yakobson or James M. Tour.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhou, H., Yu, F., Liu, Y. et al. Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Res. 6, 703–711 (2013). https://doi.org/10.1007/s12274-013-0346-2

Download citation

Keywords

  • layered MoS2
  • oxidative etching
  • thickness-dependent
  • triangular pits