Nano Research

, Volume 6, Issue 10, pp 703–711 | Cite as

Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air

  • Haiqing Zhou
  • Fang Yu
  • Yuanyue Liu
  • Xiaolong Zou
  • Chunxiao Cong
  • Caiyu Qiu
  • Ting YuEmail author
  • Zheng Yan
  • Xiaonan Shen
  • Lianfeng Sun
  • Boris I. YakobsonEmail author
  • James M. TourEmail author
Research Article


Patterning ultrathin MoS2 layers with regular edges or controllable shapes is appealing since the properties of MoS2 sheets are sensitive to the edge structures. In this work, we have introduced a simple, effective and well-controlled technique to etch layered MoS2 sheets with well-oriented equilateral triangular pits by simply heating the samples in air. The anisotropic oxidative etching is greatly affected by the surrounding temperature and the number of MoS2 layers, whereby the pit sizes increase with the increase of surrounding temperature and the number of MoS2 layers. First-principles computations have been performed to explain the formation mechanism of the triangular pits. This technique offers an alternative avenue to engineering the structure of MoS2 sheets.


layered MoS2 oxidative etching thickness-dependent triangular pits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_346_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 1.04 MB.


  1. [1]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  2. [2]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRefGoogle Scholar
  3. [3]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  4. [4]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  5. [5]
    Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.CrossRefGoogle Scholar
  6. [6]
    Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.CrossRefGoogle Scholar
  7. [7]
    Guo, Y.; Zhang, Y. F.; Bao, X. Y.; Han, T. Z.; Tang, Z.; Zhang, L. X.; Zhu, W. G.; Wang, E. G.; Niu, Q.; Qiu, Z. Q. et al. Superconductivity modulated by quantum size effects. Science 2004, 306, 1915–1917.CrossRefGoogle Scholar
  8. [8]
    Ma, L.Y.; Tang, L.; Guan, Z. L.; He, K.; An, K.; Ma, X. C.; Jia, J. F.; Xue, Q. K. Quantum size effect on adatom surface diffusion. Phys. Rev. Lett. 2006, 97, 266102.CrossRefGoogle Scholar
  9. [9]
    Ma, X. C.; Jiang, P.; Qi, Y.; Jia, J. F.; Yang, Y.; Duan, W. H.; Li, W. X.; Bao, X. H.; Zhang, S. B.; Xue, Q. K. Experimental observation of quantum oscillation of surface chemical reactivities. Proc. Natl Acad. Sci. U.S.A. 2007, 104, 9204–9208.CrossRefGoogle Scholar
  10. [10]
    Ellis, J. K.; Lucero, M. J.; Scuseria, G. E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 2011, 99, 261908.CrossRefGoogle Scholar
  11. [11]
    Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.CrossRefGoogle Scholar
  12. [12]
    Lee, C. G.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.CrossRefGoogle Scholar
  13. [13]
    Wang, Y. L.; Cong, C. X.; Qiu, C. Y.; Yu, T. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small, in press, DOI: 10.1002/smll.201202876.Google Scholar
  14. [14]
    Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966–971.CrossRefGoogle Scholar
  15. [15]
    Liu, L.; Ryu, S.; Tomasik, M. R.; Stolyarova, E.; Jung, N.; Hybertsen, M. S.; Steigerwald, M. L.; Brus, L. E.; Flynn, G. W. Graphene oxidation: Thickness-dependent etching and strong chemical doping. Nano Lett. 2008, 8, 1965–1970.CrossRefGoogle Scholar
  16. [16]
    Helveg, S.; Lauritsen, J. V.; Lægsgaard, E.; Stensgaard, I.; Nørskov, J. K.; Clausen, B. S. Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 2000, 84, 951–954.CrossRefGoogle Scholar
  17. [17]
    Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 2008, 130, 16739–16744.CrossRefGoogle Scholar
  18. [18]
    Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.CrossRefGoogle Scholar
  19. [19]
    Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.CrossRefGoogle Scholar
  20. [20]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. U.S.A. 2005, 102, 10451–10453.CrossRefGoogle Scholar
  21. [21]
    Cong, C. X.; Yu, T.; Wang, H. M.; Zheng, K. H.; Gao, P. Q.; Chen, X. D.; Zhang, Q. Self-limited oxidation: A route to form graphene layers from graphite by one-step heating. Small 2010, 6, 2837–2841.CrossRefGoogle Scholar
  22. [22]
    Zhou, H. Q.; Qiu, C. Y.; Liu, Z.; Yang, H. C.; Hu, L. J.; Liu, J.; Yang, H. F.; Gu, C. Z.; Sun, L. F. Thickness-dependent morphologies of gold on n-layer graphenes. J. Am. Chem. Soc. 2010, 132, 944–946.CrossRefGoogle Scholar
  23. [23]
    Castellanos-Gomez, A.; Agraït, N.; Rubio-Bollinger, G. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 2010, 96, 213116.CrossRefGoogle Scholar
  24. [24]
    Benameur, M. M.; Radisavljevic, B.; Héron, J. S.; Sahoo, S.; Berger, H.; Kis, A. Visibility of dichalcogenide nanolayers. Nanotechnology 2011, 22, 125706.CrossRefGoogle Scholar
  25. [25]
    Nemes-Incze, P.; Magda, G.; Kamarás, K.; Biró, L. P. Crystallographically selective nanopatterning of graphene on SiO2. Nano Res. 2010, 3, 110–116.CrossRefGoogle Scholar
  26. [26]
    Ajayan, P. M.; Yakobson, B. I. Materials science: Oxygen breaks into carbon world. Nature 2006, 7095, 818–819.CrossRefGoogle Scholar
  27. [27]
    Yang, R.; Zhang, L. C.; Wang, Y.; Shi, Z. W.; Shi, D. X.; Gao, H. J.; Wang, E. G.; Zhang, G. Y. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014–4019.CrossRefGoogle Scholar
  28. [28]
    Shi, Z. W.; Yang, R.; Zhang, L. C.; Wang, Y.; Liu, D. H.; Shi, D. X.; Wang, E. G.; Zhang, G. Y. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater. 2011, 23, 3061–3065.CrossRefGoogle Scholar
  29. [29]
    Ci, L. J.; Song, L.; Jariwala, D.; Elĺas, A. L.; Gao, W.; Terrones, M.; Ajayan, P. M. Graphene shape control by multistage cutting and transfer. Adv. Mater. 2009, 21, 4487–4491.CrossRefGoogle Scholar
  30. [30]
    Gao, L. B.; Ren, W. C.; Liu, B. L.; Wu, Z. S.; Jiang, C. B.; Cheng, H. M. Crystallographic tailoring of graphene by nonmetal SiOx nanoparticles. J. Am. Chem. Soc. 2009, 131, 13934–13936.CrossRefGoogle Scholar
  31. [31]
    Kim, Y.; Huang, J. L.; Lieber, C. M. Characterization of nanometer scale wear and oxidation of transition metal dichalcogenide lubricants by atomic force microscopy. Appl. Phys. Lett. 1991, 59, 3404.CrossRefGoogle Scholar
  32. [32]
    Wu, S. F.; Huang, C. M.; Aivazian, G.; Ross, J. S.; Cobden, D. H.; Xu, X. D. Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 2013, 7, 2768–2772.CrossRefGoogle Scholar
  33. [33]
    van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.CrossRefGoogle Scholar
  34. [34]
    Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, in press, DOI: 10.1038/NMAT3673.Google Scholar
  35. [35]
    Schweiger, H.; Raybaud, P.; Kresse, G.; Toulhoat, H. Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: A theoretical study. J. Catal. 2002, 207, 76–87.CrossRefGoogle Scholar
  36. [36]
    Huang, Y.; Wu, J.; Xu, X. F.; Ho, Y. D.; Ni, G. X.; Zou, Q.; Koon, G. K. W.; Zhao, W. J.; Shen, C. M.; Castro Neto, A. H. et al. An innovative way of etching MoS2: Characterization and mechanism investigation. Nano Res. 2013, 6, 200–207.CrossRefGoogle Scholar
  37. [37]
    Liu, H.; Gu, J. J.; Ye, P. D. MoS2 nanoribbon transistors: Transition from depletion mode to enhancement mode by channel-width trimming. IEEE Electr. Device L. 2012, 33, 1273–1275.CrossRefGoogle Scholar
  38. [38]
    Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.; Steele, G. A. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187–3192.CrossRefGoogle Scholar
  39. [39]
    Ross, S.; Sussman, A. Surface oxidation of molybdenum disulfide. J. Phys. Chem. 1955, 59, 889–892.CrossRefGoogle Scholar
  40. [40]
    Lince, J. R.; Frantz, P. P. Anisotropic oxidation of MoS2 crystallites studied by angle-resolved X-ray photoelectron spectroscopy. Tribol. Lett. 2000, 9, 211–218.CrossRefGoogle Scholar
  41. [41]
    Sekerka, R. F. Equilibrium and growth shapes of crystals: How do they differ and why should we care? Cryst. Res. Technol. 2005, 40, 291–306.CrossRefGoogle Scholar
  42. [42]
    Artyukhov, V. I.; Liu, Y.; Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 15136–15140.CrossRefGoogle Scholar
  43. [43]
    Liu, Y.; Dobrinsky, A.; Yakobson, B. I. Graphene edge from armchair to zigzag: The origins of nanotube chirality? Phys. Rev. Lett. 2010, 105, 235502.CrossRefGoogle Scholar
  44. [44]
    Liu, Y.; Bhowmick, S.; Yakobson, B. I. BN white graphene with “colorful” edges: The energies and morphology. Nano Lett. 2011, 11, 3113–3116.CrossRefGoogle Scholar
  45. [45]
    Yang, R. T.; Wong, C. Kinetics and mechanism of oxidation of basal plane on graphite. J. Chem. Phys. 1981, 75, 4471–4476.CrossRefGoogle Scholar
  46. [46]
    Chang, H.; Bard, A. J. Formation of monolayer pits of controlled nanometer size on highly oriented pyrolytic graphite by gasification reactions as studied by scanning tunneling microscopy. J. Am. Chem. Soc. 1990, 112, 4598–4599.CrossRefGoogle Scholar
  47. [47]
    Hahn, J. R.; Kang, H.; Lee, S. M.; Lee, Y. H. Mechanistic study of defect-induced oxidation of graphite. J. Phys. Chem. B 1999, 103, 9944–9951.CrossRefGoogle Scholar
  48. [48]
    Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.CrossRefGoogle Scholar
  49. [49]
    Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.CrossRefGoogle Scholar
  50. [50]
    Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Haiqing Zhou
    • 1
    • 2
  • Fang Yu
    • 5
  • Yuanyue Liu
    • 3
    • 4
  • Xiaolong Zou
    • 3
    • 4
  • Chunxiao Cong
    • 1
  • Caiyu Qiu
    • 1
  • Ting Yu
    • 1
    Email author
  • Zheng Yan
    • 2
  • Xiaonan Shen
    • 1
  • Lianfeng Sun
    • 5
  • Boris I. Yakobson
    • 2
    • 3
    • 4
    Email author
  • James M. Tour
    • 2
    • 3
    • 4
    Email author
  1. 1.Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  2. 2.Department of ChemistryRice UniversityHoustonUSA
  3. 3.The Smalley Institute for Nanoscale Science and TechnologyRice UniversityHoustonUSA
  4. 4.Department of Mechanical Engineering and Materials ScienceRice UniversityHoustonUSA
  5. 5.National Center for Nanoscience and TechnologyBeijingChina

Personalised recommendations