Continuous wafer-scale graphene on cubic-SiC(001)


The atomic and electronic structure of graphene synthesized on commercially available cubic-SiC(001)/Si(001) wafers have been studied by low energy electron microscopy (LEEM), scanning tunneling microscopy (STM), low energy electron diffraction (LEED), and angle resolved photoelectron spectroscopy (ARPES). LEEM and STM data prove the wafer-scale continuity and uniform thickness of the graphene overlayer on SiC(001). LEEM, STM and ARPES studies reveal that the graphene overlayer on SiC(001) consists of only a few monolayers with physical properties of quasi-freestanding graphene. Atomically resolved STM and micro-LEED data show that the top graphene layer consists of nanometersized domains with four different lattice orientations connected through the 〈110〉-directed boundaries. ARPES studies reveal the typical electron spectrum of graphene with the Dirac points close to the Fermi level. Thus, the use of technologically relevant SiC(001)/Si(001) wafers for graphene fabrication represents a realistic way of bridging the gap between the outstanding properties of graphene and their applications.

This is a preview of subscription content, access via your institution.


  1. [1]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. [2]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  CAS  Google Scholar 

  3. [3]

    Sprinkle, M.; Siegel, D.; Hu, Y.; Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Le Fevre, P.; Bertran, F.; Vizzini, S.; Enriquez, H.; et al. First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 2009, 103, 226803.

    Article  CAS  Google Scholar 

  4. [4]

    Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.

    Article  CAS  Google Scholar 

  5. [5]

    Berger, C.; Song, Z.; Li, X.; Wu. X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

    Article  CAS  Google Scholar 

  6. [6]

    Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J.; Ohta, T.; Reshanov, S. A.; Rohr, J.; et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207.

    Article  CAS  Google Scholar 

  7. [7]

    Ouerghi, A.; Kahouli, A.; Lucot, D.; Portail, M.; Travers, L.; Gierak, J.; Penuelas, J.; Jegou, P.; Shukla, A.; Chassagne, T. et al. Epitaxial graphene on cubic SiC(111)/Si(111) substrate. Appl. Phys. Lett. 2010, 96, 191910.

    Article  Google Scholar 

  8. [8]

    Coletti, C.; Emtsev, K. V.; Zakharov, A. A.; Ouisse, T.; Chaussende, D.; Starke, U. Large area quasi-free standing monolayer graphene on 3C-SiC(111). Appl. Phys. Lett. 2011, 99, 081904.

    Article  Google Scholar 

  9. [9]

    Portail, M.; Michon, A.; Vezian, S.; Lefebvre, D.; Chenot, S.; Roudon, E.; Zielinski, M.; Chassagne, T.; Tiberj, A.; Camassel, J.; et al. Growth mode and electric properties of graphene and graphitic phase grown by argon-propane assisted CVD on 3C-SiC/Si and 6H-SiC. J. Cryst. Growth 2012, 349, 27–35.

    Article  CAS  Google Scholar 

  10. [10]

    Suemitsu, M.; Fukidome, H. Epitaxial graphene on silicon substrates. J. Phys. D: Appl. Phys. 2010, 43, 374012.

    Article  Google Scholar 

  11. [11]

    Aristov, V. Y.; Urbanik, G.; Kummer, K.; Vyalikh, D. V.; Molodtsova, O. V.; Preobrajenski, A. B.; Zakharov, A. A.; Hess, C.; Hänke, T.; Büchner, B.; et al. Graphene synthesis on cubic SiC/Si wafers. Perspectives for mass production of graphene-based electronic devices. Nano Lett. 2010, 10, 992–995.

    Article  CAS  Google Scholar 

  12. [12]

    Ouerghi, A.; Ridene, M.; Balan, A.; Belkhou, R.; Barbier, A.; Gogneau, N.; Portail, M.; Michon, A.; Latil, S.; Jegou, P.; et al. Sharp interface in epitaxial graphene layers on 3C-SiC(100)/Si(100) wafers. Phys. Rev. B 2011, 83, 205429.

    Article  Google Scholar 

  13. [13]

    Hass, J.; Varchon, F.; Millan-Otoya, J. E.; Sprinkle, M.; Sharma, N.; de Heer, W. A.; Berger, C.; First, P. N.; Magaud, L.; Conrad, E. H. Why multilayer graphene on 4H-SiC(0001) behaves like a single sheet of graphene. Phys. Rev. Lett. 2008, 100, 125504.

    Article  CAS  Google Scholar 

  14. [14]

    Semond, F.; Soukiassian, P.; Mayne, A.; Dujardin, G.; Douillard, L.; Jaussaud, C. Atomic structure of the β-SiC(100)-(3×2) surface. Phys. Rev. Lett. 1996, 77, 2013–2016.

    Article  CAS  Google Scholar 

  15. [15]

    Soukiassian, P.; Semond, F.; Douillard, L.; Mayne, A.; Dujardin, G.; Pizzagalli, L.; Joachim, C. Direct observation of a β-SiC(100)-c(4×2) surface reconstruction. Phys. Rev. Lett. 1997, 78, 907–910.

    Article  CAS  Google Scholar 

  16. [16]

    Aristov, V. Y.; Douillard, L.; Fauchoux, O.; Soukiassian, P. Temperature-induced semiconducting c(4×2) ↔ metallic (2×1) reversible phase transition on the β-SiC(100) surface. Phys. Rev. Lett. 1997, 79, 3700–3703.

    Article  CAS  Google Scholar 

  17. [17]

    Derycke, V.; Soukiassian, P.; Mayne, A.; Dujardin, G. Scanning tunneling microscopy investigation of the C-terminated β-SiC(100) c(2×2) surface reconstruction: dimer orientation, defects and antiphase boundaries. Surf. Sci. 2000, 446, L101–L107.

    Article  CAS  Google Scholar 

  18. [18]

    Doillard, L.; Aristov, V. Y.; Semond, F.; Soukiassian, P. Pairs of Si atomic lines self-assembling on the β-SiC(100) surface: An 8×2 reconstruction. Surf. Sci. 1998, 401, L395–L400.

    Article  Google Scholar 

  19. [19]

    Hupalo, M.; Conrad, E. H.; Tringides, M. C. Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surfaces: A scanning tunneling microscopy study. Phys. Rev. B 2009, 80, 041401(R).

    Article  Google Scholar 

  20. [20]

    Hass, J.; de Heer, W. A.; Conrad, E. H. The growth and morphology of epitaxial multilayer graphene. J. Phys.: Condens. Matter 2008, 20, 323202.

    Article  Google Scholar 

  21. [21]

    Hibino, H.; Kageshima, H.; Maeda, F.; Nagase, M.; Kobayashi, Y.; Yamaguchi, H. Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Phys. Rev. B 2008, 77, 075413.

    Article  Google Scholar 

  22. [22]

    Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.

    Article  CAS  Google Scholar 

  23. [23]

    Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.

    Article  CAS  Google Scholar 

  24. [24]

    Fasolino, A.; Los, J. H.; Katsnelson, M. I. Intrinsic ripples in graphene. Nat. Mater. 2007, 6, 858–861.

    Article  CAS  Google Scholar 

  25. [25]

    Mashoff, T.; Pratzer, M.; Geringer, V.; Echtermeyer, T. J.; Lemme, M. C.; Liebmann, M.; Morgenstern, M. Bistability and oscillatory motion of natural nanomembranes appearing within monolayer graphene on silicon dioxide. Nano Lett. 2010, 10, 461–465.

    Article  CAS  Google Scholar 

  26. [26]

    Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J. M.; Colchero, J.; Gomez-Herrero, J.; Baro, A. M. WSxM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

    Article  CAS  Google Scholar 

  27. [27]

    Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.

    Article  CAS  Google Scholar 

  28. [28]

    Tao, C.; Jiao, L.; Yazyev, O. V.; Chen, Y.-C.; Feng, J.; Zhang, X.; Capaz, R. B.; Tour, J. M.; Zettl, A.; Louie, S. G. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 2011, 7, 616–620.

    Article  CAS  Google Scholar 

  29. [29]

    Tapaszto, L.; Dobrik, G.; Lambin, P.; Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 2008, 3, 397–401.

    Article  CAS  Google Scholar 

  30. [30]

    Gross, L.; Mohn, F.; Moll, N.; Schuler, B.; Criado, A.; Guitian, E.; Pena, D.; Gourdon, A.; Meyer, G. Bond-order discrimination by atomic force microscopy. Science 2012, 337, 1326–1329.

    Article  CAS  Google Scholar 

  31. [31]

    Shirley, E. L.; Terminello, L. J.; Santoni, A.; Himpsel, F. J. Brillouin-zone-selection effects in graphite photoelectron angular distributions. Phys. Rev. B 1995, 51, 13614–13622.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Alexander N. Chaika.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chaika, A.N., Molodtsova, O.V., Zakharov, A.A. et al. Continuous wafer-scale graphene on cubic-SiC(001). Nano Res. 6, 562–570 (2013).

Download citation


  • graphene
  • cubic-SiC(001)
  • STM
  • LEEM
  • LEED