Advertisement

Nano Research

, Volume 6, Issue 8, pp 562–570 | Cite as

Continuous wafer-scale graphene on cubic-SiC(001)

  • Alexander N. ChaikaEmail author
  • Olga V. Molodtsova
  • Alexei A. Zakharov
  • Dmitry Marchenko
  • Jaime Sánchez-Barriga
  • Andrei Varykhalov
  • Igor V. Shvets
  • Victor Yu. Aristov
Research Article

Abstract

The atomic and electronic structure of graphene synthesized on commercially available cubic-SiC(001)/Si(001) wafers have been studied by low energy electron microscopy (LEEM), scanning tunneling microscopy (STM), low energy electron diffraction (LEED), and angle resolved photoelectron spectroscopy (ARPES). LEEM and STM data prove the wafer-scale continuity and uniform thickness of the graphene overlayer on SiC(001). LEEM, STM and ARPES studies reveal that the graphene overlayer on SiC(001) consists of only a few monolayers with physical properties of quasi-freestanding graphene. Atomically resolved STM and micro-LEED data show that the top graphene layer consists of nanometersized domains with four different lattice orientations connected through the 〈110〉-directed boundaries. ARPES studies reveal the typical electron spectrum of graphene with the Dirac points close to the Fermi level. Thus, the use of technologically relevant SiC(001)/Si(001) wafers for graphene fabrication represents a realistic way of bridging the gap between the outstanding properties of graphene and their applications.

Keywords

graphene cubic-SiC(001) STM ARPES LEEM LEED 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_331_MOESM1_ESM.pdf (644 kb)
Supplementary material, approximately 807 KB.

References

  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefGoogle Scholar
  3. [3]
    Sprinkle, M.; Siegel, D.; Hu, Y.; Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Le Fevre, P.; Bertran, F.; Vizzini, S.; Enriquez, H.; et al. First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 2009, 103, 226803.CrossRefGoogle Scholar
  4. [4]
    Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.CrossRefGoogle Scholar
  5. [5]
    Berger, C.; Song, Z.; Li, X.; Wu. X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.CrossRefGoogle Scholar
  6. [6]
    Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J.; Ohta, T.; Reshanov, S. A.; Rohr, J.; et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207.CrossRefGoogle Scholar
  7. [7]
    Ouerghi, A.; Kahouli, A.; Lucot, D.; Portail, M.; Travers, L.; Gierak, J.; Penuelas, J.; Jegou, P.; Shukla, A.; Chassagne, T. et al. Epitaxial graphene on cubic SiC(111)/Si(111) substrate. Appl. Phys. Lett. 2010, 96, 191910.CrossRefGoogle Scholar
  8. [8]
    Coletti, C.; Emtsev, K. V.; Zakharov, A. A.; Ouisse, T.; Chaussende, D.; Starke, U. Large area quasi-free standing monolayer graphene on 3C-SiC(111). Appl. Phys. Lett. 2011, 99, 081904.CrossRefGoogle Scholar
  9. [9]
    Portail, M.; Michon, A.; Vezian, S.; Lefebvre, D.; Chenot, S.; Roudon, E.; Zielinski, M.; Chassagne, T.; Tiberj, A.; Camassel, J.; et al. Growth mode and electric properties of graphene and graphitic phase grown by argon-propane assisted CVD on 3C-SiC/Si and 6H-SiC. J. Cryst. Growth 2012, 349, 27–35.CrossRefGoogle Scholar
  10. [10]
    Suemitsu, M.; Fukidome, H. Epitaxial graphene on silicon substrates. J. Phys. D: Appl. Phys. 2010, 43, 374012.CrossRefGoogle Scholar
  11. [11]
    Aristov, V. Y.; Urbanik, G.; Kummer, K.; Vyalikh, D. V.; Molodtsova, O. V.; Preobrajenski, A. B.; Zakharov, A. A.; Hess, C.; Hänke, T.; Büchner, B.; et al. Graphene synthesis on cubic SiC/Si wafers. Perspectives for mass production of graphene-based electronic devices. Nano Lett. 2010, 10, 992–995.CrossRefGoogle Scholar
  12. [12]
    Ouerghi, A.; Ridene, M.; Balan, A.; Belkhou, R.; Barbier, A.; Gogneau, N.; Portail, M.; Michon, A.; Latil, S.; Jegou, P.; et al. Sharp interface in epitaxial graphene layers on 3C-SiC(100)/Si(100) wafers. Phys. Rev. B 2011, 83, 205429.CrossRefGoogle Scholar
  13. [13]
    Hass, J.; Varchon, F.; Millan-Otoya, J. E.; Sprinkle, M.; Sharma, N.; de Heer, W. A.; Berger, C.; First, P. N.; Magaud, L.; Conrad, E. H. Why multilayer graphene on 4H-SiC(0001) behaves like a single sheet of graphene. Phys. Rev. Lett. 2008, 100, 125504.CrossRefGoogle Scholar
  14. [14]
    Semond, F.; Soukiassian, P.; Mayne, A.; Dujardin, G.; Douillard, L.; Jaussaud, C. Atomic structure of the β-SiC(100)-(3×2) surface. Phys. Rev. Lett. 1996, 77, 2013–2016.CrossRefGoogle Scholar
  15. [15]
    Soukiassian, P.; Semond, F.; Douillard, L.; Mayne, A.; Dujardin, G.; Pizzagalli, L.; Joachim, C. Direct observation of a β-SiC(100)-c(4×2) surface reconstruction. Phys. Rev. Lett. 1997, 78, 907–910.CrossRefGoogle Scholar
  16. [16]
    Aristov, V. Y.; Douillard, L.; Fauchoux, O.; Soukiassian, P. Temperature-induced semiconducting c(4×2) ↔ metallic (2×1) reversible phase transition on the β-SiC(100) surface. Phys. Rev. Lett. 1997, 79, 3700–3703.CrossRefGoogle Scholar
  17. [17]
    Derycke, V.; Soukiassian, P.; Mayne, A.; Dujardin, G. Scanning tunneling microscopy investigation of the C-terminated β-SiC(100) c(2×2) surface reconstruction: dimer orientation, defects and antiphase boundaries. Surf. Sci. 2000, 446, L101–L107.CrossRefGoogle Scholar
  18. [18]
    Doillard, L.; Aristov, V. Y.; Semond, F.; Soukiassian, P. Pairs of Si atomic lines self-assembling on the β-SiC(100) surface: An 8×2 reconstruction. Surf. Sci. 1998, 401, L395–L400.CrossRefGoogle Scholar
  19. [19]
    Hupalo, M.; Conrad, E. H.; Tringides, M. C. Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surfaces: A scanning tunneling microscopy study. Phys. Rev. B 2009, 80, 041401(R).CrossRefGoogle Scholar
  20. [20]
    Hass, J.; de Heer, W. A.; Conrad, E. H. The growth and morphology of epitaxial multilayer graphene. J. Phys.: Condens. Matter 2008, 20, 323202.CrossRefGoogle Scholar
  21. [21]
    Hibino, H.; Kageshima, H.; Maeda, F.; Nagase, M.; Kobayashi, Y.; Yamaguchi, H. Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Phys. Rev. B 2008, 77, 075413.CrossRefGoogle Scholar
  22. [22]
    Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.CrossRefGoogle Scholar
  23. [23]
    Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.CrossRefGoogle Scholar
  24. [24]
    Fasolino, A.; Los, J. H.; Katsnelson, M. I. Intrinsic ripples in graphene. Nat. Mater. 2007, 6, 858–861.CrossRefGoogle Scholar
  25. [25]
    Mashoff, T.; Pratzer, M.; Geringer, V.; Echtermeyer, T. J.; Lemme, M. C.; Liebmann, M.; Morgenstern, M. Bistability and oscillatory motion of natural nanomembranes appearing within monolayer graphene on silicon dioxide. Nano Lett. 2010, 10, 461–465.CrossRefGoogle Scholar
  26. [26]
    Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J. M.; Colchero, J.; Gomez-Herrero, J.; Baro, A. M. WSxM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.CrossRefGoogle Scholar
  27. [27]
    Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.CrossRefGoogle Scholar
  28. [28]
    Tao, C.; Jiao, L.; Yazyev, O. V.; Chen, Y.-C.; Feng, J.; Zhang, X.; Capaz, R. B.; Tour, J. M.; Zettl, A.; Louie, S. G. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 2011, 7, 616–620.CrossRefGoogle Scholar
  29. [29]
    Tapaszto, L.; Dobrik, G.; Lambin, P.; Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 2008, 3, 397–401.CrossRefGoogle Scholar
  30. [30]
    Gross, L.; Mohn, F.; Moll, N.; Schuler, B.; Criado, A.; Guitian, E.; Pena, D.; Gourdon, A.; Meyer, G. Bond-order discrimination by atomic force microscopy. Science 2012, 337, 1326–1329.CrossRefGoogle Scholar
  31. [31]
    Shirley, E. L.; Terminello, L. J.; Santoni, A.; Himpsel, F. J. Brillouin-zone-selection effects in graphite photoelectron angular distributions. Phys. Rev. B 1995, 51, 13614–13622.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander N. Chaika
    • 1
    • 2
    Email author
  • Olga V. Molodtsova
    • 3
  • Alexei A. Zakharov
    • 4
  • Dmitry Marchenko
    • 5
  • Jaime Sánchez-Barriga
    • 5
  • Andrei Varykhalov
    • 5
  • Igor V. Shvets
    • 2
  • Victor Yu. Aristov
    • 1
    • 3
  1. 1.Institute of Solid State Physics RASChernogolovka, Moscow DistrictRussia
  2. 2.Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of PhysicsTrinity CollegeDublin 2Ireland
  3. 3.HASYLAB at DESYHamburgGermany
  4. 4.MAX-lab, Lund UniversityLundSweden
  5. 5.Helmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany

Personalised recommendations