Electrical and mechanical performance of graphene sheets exposed to oxidative environments

Abstract

Graphene coatings have been shown to protect the underlying material from oxidation when exposed to different media. However, the passivating properties of graphene in air at room temperature, which corresponds to the operating conditions of many electronic devices, still remain unclear. In this work, we analyze the oxidation kinetics of graphene/Cu samples in air at room temperature for long periods of time (from 1 day to 113 days) using scanning electron microscopy, conductive atomic force microscopy and Auger electron microscopy, and we compare the results with those obtained for similar samples treated in H2O2. We observe that unlike the graphene sheets exposed to H2O2, in which the accumulation of oxygen at the graphene domain boundaries evolves in a very controlled and progressive way, the local oxidation of graphene in air happens in a disordered manner. In both cases the oxide hillocks formed at the graphene domain boundaries can propagate to the domains until reaching a limiting width and height. Our results demonstrate that the local oxidation of the underlying material along the domain boundaries can dramatically decrease the roughness, conductivity, mechanical resistance and frictional characteristics of the graphene sheet, which reduces the performance of the whole device.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Merkula, D. M.; Novikov, P. D.; Ivanenkov, V. N.; Sapozhnikov, V. V.; Lyakhin, Y. I. Utilization of EDN varnish for protection of metal sea-water sampling bottles against corrosion. Oceanology 1974, 14, 299–300.

    Google Scholar 

  2. [2]

    Mittal, V. K.; Bersa, S.; Saravanan, T.; Sumathi, S.; Krishnan, R.; Rangarajan, S.; Velmurugan, S.; Narasimhan, S. V. Formation and characterization of bilayer oxide coating on carbon-steel for improving corrosion resistance. Thin Solid Films 2009, 517, 1672–1676.

    Article  CAS  Google Scholar 

  3. [3]

    Redondo, M. I.; Breslin, C. B. Polypyrrole electrodeposited on copper from an aqueous phosphate solution: Corrosion protection properties. Corros. Sci. 2007, 49, 1765–1776.

    Article  CAS  Google Scholar 

  4. [4]

    Segarra, M.; Miralles, L.; Diaz, J.; Xuriguera, H.; Chimenos, J. M.; Espiell, F.; Pinol, S. Copper and CuNi alloys substrates for HTS coated conductor applications protected from oxidation. Mater. Sci. Forum 2003, 426–432, 3511–3516.

    Article  Google Scholar 

  5. [5]

    Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  CAS  Google Scholar 

  6. [6]

    Katsnelson, M. I. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20–27.

    Article  CAS  Google Scholar 

  7. [7]

    Shi, Z. W.; Lu, H. L.; Zhang, L. C.; Yang, R.; Wang, Y.; Liu, D. H.; Guo, H. M.; Shi, D. X.; Gao, H. J.; Wang, E. G. et al. Studies of graphene-based nanoelectromechanical switches. Nano Res. 2012, 5, 82–87.

    Article  CAS  Google Scholar 

  8. [8]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  9. [9]

    Andrei, E. Y.; Li, G.; Du, X. Electronic properties of graphene: A perspective from scanning tunneling microscopy and magneto-transport. Rep. Prog. Phys. 2012, 75, 056501.

    Article  Google Scholar 

  10. [10]

    Peres, N. M. R. Colloquium: The transport properties of graphene: An introduction. Rev. Mod. Phys. 2010, 82, 2673–2700.

    Article  CAS  Google Scholar 

  11. [11]

    Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

    Article  CAS  Google Scholar 

  12. [12]

    Chen, S. S.; Brown, L.; Levendorf, M.; Cai, W. W.; Ju, S. Y.; Edgeworth, J.; Li, X. S.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011, 5, 1321–1327.

    Article  CAS  Google Scholar 

  13. [13]

    Holt, J. K.; Park, H. G.; Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312, 1034–1037.

    Article  CAS  Google Scholar 

  14. [14]

    Kang, D.; Kwon, J. Y.; Cho, H.; Sim, J. H.; Hwang, H. S.; Kim, C. S.; Kim, Y. J.; Ruoff, R. S.; Shin, H. S. Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers. ACS Nano 2012, 6, 7763–7769.

    Article  CAS  Google Scholar 

  15. [15]

    Nilsson, L.; Andersen, M.; Balog, R.; Laegsgaard, E.; Hofmann, P.; Besenbacher, F.; Hammer, B.; Stensgaard, I.; Hornekær, L. Graphene coatings: Probing the limits of the one atom thick protection layer. ACS Nano 2012, 6, 10258–10266.

    Article  CAS  Google Scholar 

  16. [16]

    Duong, D. L.; Han, G. H.; Lee, S. M.; Gunes, F.; Kim, E. S.; Kim, S. T.; Kim, H.; Ta, Q. H.; So, K. P.; Yoon S. J. et al. Probing graphene grain boundaries with optical microscopy. Nature 2012, 490, 235–239.

    Article  CAS  Google Scholar 

  17. [17]

    Nemes-Incze, P.; Yoo, K. J.; Tapasztó, L.; Dobrik, G.; Lábár, J.; Horváth, Z. E.; Hwang, C.; Biro, L. P. Revealing the grain structure of graphene grown by chemical vapor deposition. App. Phys. Lett. 2011, 99, 023104.

    Article  Google Scholar 

  18. [18]

    Raman, R. K. S.; Banerjee, P. C.; Lobo, D. E.; Gullapallli, H.; Sumandasa, M.; Kumar, A.; Choudhary, L.; Tkacz, R.; Ajayan, P. M.; Majumder, M. Protecting copper from electrochemical degradation by graphene coating. Carbon 2012, 50, 4040–4045.

    Article  Google Scholar 

  19. [19]

    Won, M. S.; Penkov, O. V.; Kim, D. E. Durability and degradation mechanism of graphene coatings deposited on Cu substrates under dry contact sliding. Carbon 2012, 54, 472–481.

    Article  Google Scholar 

  20. [20]

    David, L.; Bhandavat, R.; Kulkarni, G.; Pahwa, S.; Zhong, Z.; Singh, G. Synthesis of graphene films by rapid heating and quenching at ambien pressures and their electrochemical characterization. ACS Appl. Mater. Interfaces 2013, 5, 546–552.

    Article  CAS  Google Scholar 

  21. [21]

    Prasai, D.; Tuberquia, J. C.; Harl, R. R.; Jennings, G. K.; Bolotin, K. I. Graphene: Corrosion-inhibiting coating. ACS Nano 2012, 6, 1102–1108.

    Article  CAS  Google Scholar 

  22. [22]

    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R. D.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  CAS  Google Scholar 

  23. [23]

    Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y. F.; Ahmed, S.; An, J.; Swan, A. K.; Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916–6924.

    Article  CAS  Google Scholar 

  24. [24]

    Regan, W.; Alem, N.; Aleman, B.; Geng, B. S.; Girit, Caglar.; Maserati, L.; Wang, F.; Crommie, M.; Zettl, A. A direct transfer of layer-area graphene. Appl. Phys. Lett. 2010, 96, 113102.

    Article  Google Scholar 

  25. [25]

    Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324–3334.

    Article  CAS  Google Scholar 

  26. [26]

    Rafiee, J.; Mi, X.; Gullapalli, H.; Thomas, A. V.; Yavari, F.; Shi, Y.; Ajayan, P. M.; Koratkar, N. A. Wetting transparency of graphene. Nat. Mater. 2012, 11, 217–222.

    Article  CAS  Google Scholar 

  27. [27]

    Chen, X. M.; Wu, J.; Ma, R. Y.; Hua, M.; Koratkar, N.; Yao, S. H.; Wang, Z. K. Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater. 2011, 24, 4617–4623.

    Article  Google Scholar 

  28. [28]

    Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; Park, J.; McEuen, P. L. et al. Imaging grains and grain boundaries in single-layer graphene: An atomic patchwork quilt. Nature 2011, 469, 389–392.

    Article  CAS  Google Scholar 

  29. [29]

    Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.

    Article  CAS  Google Scholar 

  30. [30]

    Ahmad, M.; Han, S. A.; Tien, D. H.; Jung, J.; Seo, Y. Local conductance measurement of graphene layer using conductive atomic force microscopy. J. Appl. Phys. 2011, 110, 054307.

    Article  Google Scholar 

  31. [31]

    Kwon, S.; Chung, H. J.; Seo, S.; Park, J. Y. Domain structures of single layer graphene imaged with conductive probe atomic force microscopy. Surf. Interface Anal. 2012, 44, 768–771.

    Article  CAS  Google Scholar 

  32. [32]

    Orofeo, C. M.; Hibino, H.; Kawahara, K.; Ogawa, Y.; Tsuji, M.; Ikeda, K. I.; Mizuno, S.; Ago, H. Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon 2012, 50, 2189–2196.

    Article  CAS  Google Scholar 

  33. [33]

    Ismach, A.; Druzgalski, C.; Penwell, S.; Schwartzberg, A.; Zheng, M.; Javey, A.; Bokor, J.; Zhang, Y. G. Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 2010, 10, 1542–1548.

    Article  CAS  Google Scholar 

  34. [34]

    Han, G. H.; Günes, F.; Bae, J. J.; Kim, E. S.; Chae, S. J.; Shin, H. J.; Choi, J. Y.; Pribat, D.; Lee, Y. H. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 2011, 11, 4144–4148.

    Article  CAS  Google Scholar 

  35. [35]

    Robertson, A. W.; Warner, J. H. Hexagonal single crystal domains of few-layer graphene on copper foils. Nano Lett. 2011, 11, 1182–1189.

    Article  CAS  Google Scholar 

  36. [36]

    Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328–4334

    Article  CAS  Google Scholar 

  37. [37]

    Liao, Z. M.; Han, B. H.; Zhou, Y. B.; Yu, D. P. Hysteresis reversion in graphene field-effect transistors. J. Chem. Phys. 2010, 133, 044703.

    Article  Google Scholar 

  38. [38]

    Zhang, Y. F.; Gao, T.; Gao, Y. B.; Xie, S. B.; Ji, Q. Q.; Yan, K.; Peng, H. L. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano 2011, 5, 4014–4022.

    Article  CAS  Google Scholar 

  39. [39]

    Nafria, M.; Rodriguez, R.; Porti, M.; Martin-Martinez, J.; Lanza, M.; Aymerich, X. Time-dependent variability of high-k based MOS devices: Nanoscale characterization and inclusion in circuit simulators. Int. Elec. Dev. Meet. 2011, 6.3.1–6.3.4.

    Google Scholar 

  40. [40]

    Ouyang, Y. J.; Dai, H. J.; Guo, J. Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material. Nano Res. 2010, 3, 8–15.

    Article  CAS  Google Scholar 

  41. [41]

    Chen, Y. S.; Xu, Y. F.; Zhao, K.; Wan, X. J.; Deng, J. C.; Yan, W. B. Towards flexible all-carbon electronics: Flexible organic field-effect transistors and inverter circuits using solution-processed all-graphene source/drain/gate electrodes. Nano Res. 2010, 3, 714–721.

    Article  CAS  Google Scholar 

  42. [42]

    Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729–736.

    Article  CAS  Google Scholar 

  43. [43]

    Choi, D.; Choi, M. Y.; Choi, W. M.; Shin, H. J.; Park, H. Y.; Seo, J. S.; Park, J.; Yoon, S. M.; Chae, S. J.; Lee, Y. H. Fully rollable transparent nanogenerators based on graphene electrodes. Adv. Mater. 2010, 22, 2187–2192.

    Article  CAS  Google Scholar 

  44. [44]

    Ando, Y. Lowering friction coefficient under low loads by minimizing effects of adhesion force and viscous resistance. Wear 2003, 254, 965–973.

    Article  CAS  Google Scholar 

  45. [45]

    Shin, Y. J.; Stromberg, R.; Nay, R.; Huang, H.; Wee, A. T. S.; Yang, H.; Bhatia, C. S. Frictional characteristics of exfoliated and epitaxial graphene. Carbon 2011, 49, 4070–4073.

    Article  CAS  Google Scholar 

  46. [46]

    Liu, N.; Pan, Z. H.; Fu, L.; Zhang, C. H.; Dai, B. Y.; Liu, Z. F. The origin of wrinkles on transferred graphene. Nano Res. 2011, 4, 996–1004.

    Article  CAS  Google Scholar 

  47. [47]

    Wei, Y.; Wu, J.; Yin, H.; Shi, X.; Yang, R.; Dresselhaus, M. The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat. Mat. 2012, 11, 759–763.

    Article  CAS  Google Scholar 

  48. [48]

    Chen, X. Y.; Seo, D. H.; Seo, S.; Chung, H.; Wong, H. S. P. Graphene interconnect lifetime: A reliability analysis. IEEE Electron Device Lett. 2012, 33, 1604–1606.

    Article  CAS  Google Scholar 

  49. [49]

    Bae, S.; Kim, S. J.; Shin, D.; Ahn, J. H.; Hong, B. H. Towards industrial applications of graphene electrodes. Phys. Scr. 2012, T146, 014024.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huiling Duan.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lanza, M., Wang, Y., Gao, T. et al. Electrical and mechanical performance of graphene sheets exposed to oxidative environments. Nano Res. 6, 485–495 (2013). https://doi.org/10.1007/s12274-013-0326-6

Download citation

Keywords

  • graphene
  • local oxidation
  • domain boundary
  • passivating layer