Nano Research

, Volume 6, Issue 7, pp 485–495 | Cite as

Electrical and mechanical performance of graphene sheets exposed to oxidative environments

  • Mario Lanza
  • Yan Wang
  • Teng Gao
  • Albin Bayerl
  • Marc Porti
  • Montserrat Nafria
  • Yangbo Zhou
  • Guangyin Jing
  • Yanfeng Zhang
  • Zhongfan Liu
  • Dapeng Yu
  • Huiling DuanEmail author
Research Article


Graphene coatings have been shown to protect the underlying material from oxidation when exposed to different media. However, the passivating properties of graphene in air at room temperature, which corresponds to the operating conditions of many electronic devices, still remain unclear. In this work, we analyze the oxidation kinetics of graphene/Cu samples in air at room temperature for long periods of time (from 1 day to 113 days) using scanning electron microscopy, conductive atomic force microscopy and Auger electron microscopy, and we compare the results with those obtained for similar samples treated in H2O2. We observe that unlike the graphene sheets exposed to H2O2, in which the accumulation of oxygen at the graphene domain boundaries evolves in a very controlled and progressive way, the local oxidation of graphene in air happens in a disordered manner. In both cases the oxide hillocks formed at the graphene domain boundaries can propagate to the domains until reaching a limiting width and height. Our results demonstrate that the local oxidation of the underlying material along the domain boundaries can dramatically decrease the roughness, conductivity, mechanical resistance and frictional characteristics of the graphene sheet, which reduces the performance of the whole device.


graphene local oxidation domain boundary passivating layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_326_MOESM1_ESM.pdf (628 kb)
Supplementary material, approximately 628 KB.


  1. [1]
    Merkula, D. M.; Novikov, P. D.; Ivanenkov, V. N.; Sapozhnikov, V. V.; Lyakhin, Y. I. Utilization of EDN varnish for protection of metal sea-water sampling bottles against corrosion. Oceanology 1974, 14, 299–300.Google Scholar
  2. [2]
    Mittal, V. K.; Bersa, S.; Saravanan, T.; Sumathi, S.; Krishnan, R.; Rangarajan, S.; Velmurugan, S.; Narasimhan, S. V. Formation and characterization of bilayer oxide coating on carbon-steel for improving corrosion resistance. Thin Solid Films 2009, 517, 1672–1676.CrossRefGoogle Scholar
  3. [3]
    Redondo, M. I.; Breslin, C. B. Polypyrrole electrodeposited on copper from an aqueous phosphate solution: Corrosion protection properties. Corros. Sci. 2007, 49, 1765–1776.CrossRefGoogle Scholar
  4. [4]
    Segarra, M.; Miralles, L.; Diaz, J.; Xuriguera, H.; Chimenos, J. M.; Espiell, F.; Pinol, S. Copper and CuNi alloys substrates for HTS coated conductor applications protected from oxidation. Mater. Sci. Forum 2003, 426–432, 3511–3516.CrossRefGoogle Scholar
  5. [5]
    Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.CrossRefGoogle Scholar
  6. [6]
    Katsnelson, M. I. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20–27.CrossRefGoogle Scholar
  7. [7]
    Shi, Z. W.; Lu, H. L.; Zhang, L. C.; Yang, R.; Wang, Y.; Liu, D. H.; Guo, H. M.; Shi, D. X.; Gao, H. J.; Wang, E. G. et al. Studies of graphene-based nanoelectromechanical switches. Nano Res. 2012, 5, 82–87.CrossRefGoogle Scholar
  8. [8]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  9. [9]
    Andrei, E. Y.; Li, G.; Du, X. Electronic properties of graphene: A perspective from scanning tunneling microscopy and magneto-transport. Rep. Prog. Phys. 2012, 75, 056501.CrossRefGoogle Scholar
  10. [10]
    Peres, N. M. R. Colloquium: The transport properties of graphene: An introduction. Rev. Mod. Phys. 2010, 82, 2673–2700.CrossRefGoogle Scholar
  11. [11]
    Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.CrossRefGoogle Scholar
  12. [12]
    Chen, S. S.; Brown, L.; Levendorf, M.; Cai, W. W.; Ju, S. Y.; Edgeworth, J.; Li, X. S.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011, 5, 1321–1327.CrossRefGoogle Scholar
  13. [13]
    Holt, J. K.; Park, H. G.; Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312, 1034–1037.CrossRefGoogle Scholar
  14. [14]
    Kang, D.; Kwon, J. Y.; Cho, H.; Sim, J. H.; Hwang, H. S.; Kim, C. S.; Kim, Y. J.; Ruoff, R. S.; Shin, H. S. Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers. ACS Nano 2012, 6, 7763–7769.CrossRefGoogle Scholar
  15. [15]
    Nilsson, L.; Andersen, M.; Balog, R.; Laegsgaard, E.; Hofmann, P.; Besenbacher, F.; Hammer, B.; Stensgaard, I.; Hornekær, L. Graphene coatings: Probing the limits of the one atom thick protection layer. ACS Nano 2012, 6, 10258–10266.CrossRefGoogle Scholar
  16. [16]
    Duong, D. L.; Han, G. H.; Lee, S. M.; Gunes, F.; Kim, E. S.; Kim, S. T.; Kim, H.; Ta, Q. H.; So, K. P.; Yoon S. J. et al. Probing graphene grain boundaries with optical microscopy. Nature 2012, 490, 235–239.CrossRefGoogle Scholar
  17. [17]
    Nemes-Incze, P.; Yoo, K. J.; Tapasztó, L.; Dobrik, G.; Lábár, J.; Horváth, Z. E.; Hwang, C.; Biro, L. P. Revealing the grain structure of graphene grown by chemical vapor deposition. App. Phys. Lett. 2011, 99, 023104.CrossRefGoogle Scholar
  18. [18]
    Raman, R. K. S.; Banerjee, P. C.; Lobo, D. E.; Gullapallli, H.; Sumandasa, M.; Kumar, A.; Choudhary, L.; Tkacz, R.; Ajayan, P. M.; Majumder, M. Protecting copper from electrochemical degradation by graphene coating. Carbon 2012, 50, 4040–4045.CrossRefGoogle Scholar
  19. [19]
    Won, M. S.; Penkov, O. V.; Kim, D. E. Durability and degradation mechanism of graphene coatings deposited on Cu substrates under dry contact sliding. Carbon 2012, 54, 472–481.CrossRefGoogle Scholar
  20. [20]
    David, L.; Bhandavat, R.; Kulkarni, G.; Pahwa, S.; Zhong, Z.; Singh, G. Synthesis of graphene films by rapid heating and quenching at ambien pressures and their electrochemical characterization. ACS Appl. Mater. Interfaces 2013, 5, 546–552.CrossRefGoogle Scholar
  21. [21]
    Prasai, D.; Tuberquia, J. C.; Harl, R. R.; Jennings, G. K.; Bolotin, K. I. Graphene: Corrosion-inhibiting coating. ACS Nano 2012, 6, 1102–1108.CrossRefGoogle Scholar
  22. [22]
    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R. D.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  23. [23]
    Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y. F.; Ahmed, S.; An, J.; Swan, A. K.; Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916–6924.CrossRefGoogle Scholar
  24. [24]
    Regan, W.; Alem, N.; Aleman, B.; Geng, B. S.; Girit, Caglar.; Maserati, L.; Wang, F.; Crommie, M.; Zettl, A. A direct transfer of layer-area graphene. Appl. Phys. Lett. 2010, 96, 113102.CrossRefGoogle Scholar
  25. [25]
    Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324–3334.CrossRefGoogle Scholar
  26. [26]
    Rafiee, J.; Mi, X.; Gullapalli, H.; Thomas, A. V.; Yavari, F.; Shi, Y.; Ajayan, P. M.; Koratkar, N. A. Wetting transparency of graphene. Nat. Mater. 2012, 11, 217–222.CrossRefGoogle Scholar
  27. [27]
    Chen, X. M.; Wu, J.; Ma, R. Y.; Hua, M.; Koratkar, N.; Yao, S. H.; Wang, Z. K. Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater. 2011, 24, 4617–4623.CrossRefGoogle Scholar
  28. [28]
    Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; Park, J.; McEuen, P. L. et al. Imaging grains and grain boundaries in single-layer graphene: An atomic patchwork quilt. Nature 2011, 469, 389–392.CrossRefGoogle Scholar
  29. [29]
    Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.CrossRefGoogle Scholar
  30. [30]
    Ahmad, M.; Han, S. A.; Tien, D. H.; Jung, J.; Seo, Y. Local conductance measurement of graphene layer using conductive atomic force microscopy. J. Appl. Phys. 2011, 110, 054307.CrossRefGoogle Scholar
  31. [31]
    Kwon, S.; Chung, H. J.; Seo, S.; Park, J. Y. Domain structures of single layer graphene imaged with conductive probe atomic force microscopy. Surf. Interface Anal. 2012, 44, 768–771.CrossRefGoogle Scholar
  32. [32]
    Orofeo, C. M.; Hibino, H.; Kawahara, K.; Ogawa, Y.; Tsuji, M.; Ikeda, K. I.; Mizuno, S.; Ago, H. Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon 2012, 50, 2189–2196.CrossRefGoogle Scholar
  33. [33]
    Ismach, A.; Druzgalski, C.; Penwell, S.; Schwartzberg, A.; Zheng, M.; Javey, A.; Bokor, J.; Zhang, Y. G. Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 2010, 10, 1542–1548.CrossRefGoogle Scholar
  34. [34]
    Han, G. H.; Günes, F.; Bae, J. J.; Kim, E. S.; Chae, S. J.; Shin, H. J.; Choi, J. Y.; Pribat, D.; Lee, Y. H. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 2011, 11, 4144–4148.CrossRefGoogle Scholar
  35. [35]
    Robertson, A. W.; Warner, J. H. Hexagonal single crystal domains of few-layer graphene on copper foils. Nano Lett. 2011, 11, 1182–1189.CrossRefGoogle Scholar
  36. [36]
    Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328–4334CrossRefGoogle Scholar
  37. [37]
    Liao, Z. M.; Han, B. H.; Zhou, Y. B.; Yu, D. P. Hysteresis reversion in graphene field-effect transistors. J. Chem. Phys. 2010, 133, 044703.CrossRefGoogle Scholar
  38. [38]
    Zhang, Y. F.; Gao, T.; Gao, Y. B.; Xie, S. B.; Ji, Q. Q.; Yan, K.; Peng, H. L. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano 2011, 5, 4014–4022.CrossRefGoogle Scholar
  39. [39]
    Nafria, M.; Rodriguez, R.; Porti, M.; Martin-Martinez, J.; Lanza, M.; Aymerich, X. Time-dependent variability of high-k based MOS devices: Nanoscale characterization and inclusion in circuit simulators. Int. Elec. Dev. Meet. 2011, 6.3.1–6.3.4.Google Scholar
  40. [40]
    Ouyang, Y. J.; Dai, H. J.; Guo, J. Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material. Nano Res. 2010, 3, 8–15.CrossRefGoogle Scholar
  41. [41]
    Chen, Y. S.; Xu, Y. F.; Zhao, K.; Wan, X. J.; Deng, J. C.; Yan, W. B. Towards flexible all-carbon electronics: Flexible organic field-effect transistors and inverter circuits using solution-processed all-graphene source/drain/gate electrodes. Nano Res. 2010, 3, 714–721.CrossRefGoogle Scholar
  42. [42]
    Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729–736.CrossRefGoogle Scholar
  43. [43]
    Choi, D.; Choi, M. Y.; Choi, W. M.; Shin, H. J.; Park, H. Y.; Seo, J. S.; Park, J.; Yoon, S. M.; Chae, S. J.; Lee, Y. H. Fully rollable transparent nanogenerators based on graphene electrodes. Adv. Mater. 2010, 22, 2187–2192.CrossRefGoogle Scholar
  44. [44]
    Ando, Y. Lowering friction coefficient under low loads by minimizing effects of adhesion force and viscous resistance. Wear 2003, 254, 965–973.CrossRefGoogle Scholar
  45. [45]
    Shin, Y. J.; Stromberg, R.; Nay, R.; Huang, H.; Wee, A. T. S.; Yang, H.; Bhatia, C. S. Frictional characteristics of exfoliated and epitaxial graphene. Carbon 2011, 49, 4070–4073.CrossRefGoogle Scholar
  46. [46]
    Liu, N.; Pan, Z. H.; Fu, L.; Zhang, C. H.; Dai, B. Y.; Liu, Z. F. The origin of wrinkles on transferred graphene. Nano Res. 2011, 4, 996–1004.CrossRefGoogle Scholar
  47. [47]
    Wei, Y.; Wu, J.; Yin, H.; Shi, X.; Yang, R.; Dresselhaus, M. The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat. Mat. 2012, 11, 759–763.CrossRefGoogle Scholar
  48. [48]
    Chen, X. Y.; Seo, D. H.; Seo, S.; Chung, H.; Wong, H. S. P. Graphene interconnect lifetime: A reliability analysis. IEEE Electron Device Lett. 2012, 33, 1604–1606.CrossRefGoogle Scholar
  49. [49]
    Bae, S.; Kim, S. J.; Shin, D.; Ahn, J. H.; Hong, B. H. Towards industrial applications of graphene electrodes. Phys. Scr. 2012, T146, 014024.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mario Lanza
    • 1
  • Yan Wang
    • 2
  • Teng Gao
    • 3
  • Albin Bayerl
    • 4
  • Marc Porti
    • 4
  • Montserrat Nafria
    • 4
  • Yangbo Zhou
    • 5
  • Guangyin Jing
    • 6
  • Yanfeng Zhang
    • 3
  • Zhongfan Liu
    • 3
  • Dapeng Yu
    • 5
  • Huiling Duan
    • 1
    Email author
  1. 1.State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Aerospace Engineering, CAPT, College of EngineeringPeking UniversityBeijingChina
  2. 2.Beijing Aeronautical Science and Technology Research InstituteBeijingChina
  3. 3.Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
  4. 4.Electronic Engineering DepartmentUniversitat Autonoma de BarcelonaCerdanyola del VallesSpain
  5. 5.Department of Physics, State Key Laboratory for Mesoscopic PhysicsPeking UniversityBeijingChina
  6. 6.Physics DepartmentNorthwest UniversityXi’anChina

Personalised recommendations